next up previous contents
Next: Samenvatting Up: From Pattern Formation to Morphogenesis Previous: 7. Summarising Discussion   Contents

Bibliography

Akam, M.
The molecular basis for metameric pattern in the Drosophila embryo.
Development 101: 1-22 (1987). MEDLINE.

Alcantara, F. & Monk, M.
Signal propagation during aggregation in the slime mould Dictyostelium discoideum.
J. Gen. Microbiol. 85: 321-334 (1974). MEDLINE.

Allessie, M. A., Bonke, F. I. M. & Schopman, F. G. J.
Circus movement in rabbit atrial muscle as a mechanism of trachycardia.
Circ. Res. 33: 54-62 (1973). MEDLINE.

Alon, U., Surette, M. G., Barkai, N. & Leibler, S.
Robustness in bacterial chemotaxis.
Nature 397: 168-171 (1999). MEDLINE.

Amagai, A., Ishida, S. & Takeuchi, I.
Cell differentiation in a temperature-sensitive stalkless mutant of Dictyostelium discoideum.
J. Embryol. Exp. Morphol. 74: 235-243 (1983). MEDLINE.

Bär, M. & Eiswirth, M.
Turbulence due to spiral breakup in a continuous excitable medium.
Phys. Rev. E 48: R1635-R1637 (1993).

Barkai, N. & Leibler, S.
Robustness in simple biochemical networks.
Nature 387: 913-917 (1997). MEDLINE.

Barkley, D. S.
Adenosine-3',5'-phosphate: identification as acrasin in a species of cellular slime mold.
Science 165: 1133-1134 (1969). MEDLINE.

Berks, M. & Kay, R. R.
Combinatorial control of cell differentiation by cAMP and DIF-1 during development of Dictyostelium discoideum.
Development 110: 977-984 (1990). MEDLINE.

Boerlijst, M. & Hogeweg, P.
Self-structuring and selection: spiral waves as a substrate for prebiotic evolution.
In Artificial life II, edited by C. G. Langton, C. Taylor, J. D. Farmer & S. Rasmussen, volume 10 of SFI studies in the sciences of complexity, pp. 255-276. Addison-Wesley, Redwood City, California (1991).

Bonner, J. T.
Evidence for the formation of aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum.
J. Exp. Zool. 106: 1-26 (1947).

Bonner, J. T.
The demonstration of acrasin in the later stages of the development of the slime mold Dictyostelium discoideum.
J. Exp. Zool. 110: 259-271 (1949).

Bonner, J. T.
Proteolysis and orientation in Dictyostelium slugs.
J. Gen. Microbiol. 139: 2319-2322 (1993). MEDLINE.

Bonner, J. T.
A way of following individual cells in the migrating slugs of Dictyostelium discoideum.
Proc. Natl. Acad. Sci. U.S.A. 95: 9355-9359 (1998). MEDLINE.

Bonner, J. T., Chiang, A., Lee, J. & Suthers, H. B.
The possible role of ammonia in phototaxis of migrating slugs of Dictyostelium discoideum.
Proc. Natl. Acad. Sci. U.S.A. 85: 3885-3887 (1988).

Bonner, J. T., Compton, K. B., Cox, E. C., Fey, P. & Gregg, K. Y.
Development in one dimension: the rapid differentiation of Dictyostelium discoideum in glass capillaries.
Proc. Natl. Acad. Sci. U.S.A. 92: 8249-8253 (1995). MEDLINE.

Bonner, J. T. & Dodd, M. R.
Evidence for gas-induced orientation in the cellular slime molds.
Dev. Biol. 5: 344-361 (1962).

Bonner, J. T., Har, D. & Suthers, H. B.
Ammonia and thermotaxis: further evidence for a central role of ammonia in the directed cell mass movements of Dictyostelium discoideum.
Proc. Natl. Acad. Sci. U.S.A. 86: 2733-2736 (1989).

Bonner, J. T., Hay, A., John, D. G. & Suthers, H. B.
pH affects fruiting and slug orientation in Dictyostelium discoideum.
J. Embryol. Exp. Morphol. 87: 207-213 (1985). MEDLINE.

Bonner, J. T., Koontz, Jr, P. G. & Paton, D.
Size in relation to the rate of migration in the slime mold Dictyostelium discoideum.
Mycologia 45: 235-240 (1953).

Bonner, J. T., Suthers, H. B. & Odell, G. M.
Ammonia orients cell masses and speeds up aggregating cells of slime moulds.
Nature 323: 630-632 (1986).

Bonner, J. T. & Whitfield, F. E.
The relation of sorocarp size to phototaxis in the cellular slime mold, Dictyostelium purpureum.
Biol. Bull. 128: 51-57 (1965).

Bozzaro, S. & Ponte, E.
Cell adhesion in the life cycle of Dictyostelium.
Experientia 51: 1175-1188 (1995). MEDLINE.

Bresenham, J. E.
Algorithm for computer control of a digital plotter.
IBM Systems J. 4: 25-30 (1965).

Bretschneider, T., Siegert, F. & Weijer, C. J.
Three-dimensional scroll waves of cAMP could direct cell movement and gene expression in Dictyostelium slugs.
Proc. Natl. Acad. Sci. U.S.A. 92: 4387-4391 (1995). MEDLINE.

Bretschneider, T., Vasiev, B. & Weijer, C. J.
A model for cell movement during Dictyostelium mound formation.
J. theor. Biol. 189: 41-51 (1997). MEDLINE.

Bretschneider, T., Vasiev, B. & Weijer, C. J.
A model for Dictyostelium slug movement.
J. theor. Biol. 199: 125-136 (1999). MEDLINE.

Buder, J.
Neue phototropische Fundamentalversuche.
Ber. Dtsch. Bot. Ges. 38: 10-19 (1920).

Budrene, E. O. & Berg, H. C.
Complex patterns formed by motile cells of Escherichia coli.
Nature 349: 630-633 (1991). MEDLINE.

Budrene, E. O. & Berg, H. C.
Dynamics of formation of symmetrical patterns by chemotactic bacteria.
Nature 376: 49-53 (1995). MEDLINE.

Castets, V., Dulos, E., Boissonade, J. & de Kepper, P.
Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern.
Phys. Rev. Lett. 64: 2953-2956 (1990). MEDLINE.

Chaplain, M. A. J., Singh, G. D. & McLachlan, J. C. (editors).
On Growth and Form: Spatio-temporal Pattern Formation in Biology.
Wiley series in mathematical and computational biology. John Wiley & Sons, Chichester (1999).

Chen, T.-L. L., Kowalczyk, P. A., Ho, G. & Chisholm, R. L.
Targeted disruption of the Dictyostelium myosin essential light chain gene produces cells defective in cytokinesis and morphogenesis.
J. Cell Sci. 108: 3207-3218 (1995). MEDLINE.

Chen, T.-L. L., Wolf, W. A. & Chisholm, R. L.
Cell-type-specific rescue of myosin function during Dictyostelium development defines two distinct cell movements required for culmination.
Development 125: 3895-3903 (1998). MEDLINE.

Clow, P. A., Chen, T.-L. L., Chisholm, R. L. & McNally, J. G.
Three-dimensional in vivo analysis of Dictyostelium mounds reveals directional sorting of prestalk cells and defines a role for the myosin II regulatory light chain in prestalk cell sorting and tip protrusion.
Development 127: 2715-2728 (2000). MEDLINE.

Cohen, M. H. & Robertson, A.
Chemotaxis and the early stages of aggregation in cellular slime molds.
J. theor. Biol. 31: 119-130 (1971a). MEDLINE.

Cohen, M. H. & Robertson, A.
Wave propagation in the early stages of aggregation of cellular slime molds.
J. theor. Biol. 31: 101-118 (1971b). MEDLINE.

Conway Morris, S.
The Cambrian ``explosion'': slow-fuse or megatonnage?
Proc. Natl. Acad. Sci. U.S.A. 97: 4426-4429 (2000). MEDLINE.

Cotter, D. A., Sands, T. W., Virdy, K. J., North, M. J., Klein, G. & Satre, M.
Patterning of development in Dictyostelium discoideum: factors regulating growth, differentiation, spore dormancy, and germination.
Biochem. Cell Biol. 70: 892-919 (1992). MEDLINE.

Courtemanche, M., Glass, L. & Keener, J. P.
Instabilities of a propagating pulse in a ring of excitable media.
Phys. Rev. Lett. 70: 2182-2185 (1993). MEDLINE.

Courtemanche, M. & Winfree, A. T.
Re-entrant rotating waves in a Beeler-Reuter based model of two-dimensional cardiac electrical activity.
Int. J. Bifurc. Chaos 1: 431-444 (1991).

Dallon, J. C. & Othmer, H. G.
A continuum analysis of the chemotactic signal seen by Dictyostelium discoideum.
J. theor. Biol. 194: 461-483 (1998). MEDLINE.

Darcy, P. K. & Fisher, P. R.
Pharmacological evidence for a role for cyclic AMP signalling in Dictyostelium discoideum slug behaviour.
J. Cell Sci. 96: 661-667 (1990).

von Dassow, G., Meir, E., Munro, E. M. & Odell, G. M.
The segment polarity network is a robust developmental module.
Nature 406: 188-192 (2000). MEDLINE.

Davies, L., Satre, M., Martin, J.-B. & Gross, J. D.
The target of ammonia action in Dictyostelium.
Cell 75: 321-327 (1993). MEDLINE.

Dormann, D., Siegert, F. & Weijer, C. J.
Analysis of cell movement during the culmination phase of Dictyostelium development.
Development 122: 761-769 (1996). MEDLINE.

Dormann, D., Vasiev, B. & Weijer, C. J.
Propagating waves control Dictyostelium discoideum morphogenesis.
Biophys. Chem. 72: 21-35 (1998). MEDLINE.

van Duijn, B. & Inouye, K.
Regulation of movement speed by intracellular pH during Dictyostelium discoideum chemotaxis.
Proc. Natl. Acad. Sci. U.S.A. 88: 4951-4955 (1991).

Dunbar, A. J. & Wheldrake, J. F.
Analysis of mRNA levels for developmentally regulated prespore specific glutamine synthetase in Dictyostelium discoideum.
Dev. Growth Differ. 39: 617-624 (1997). MEDLINE.

Durston, A. J.
Dictyostelium discoideum aggregation fields as excitable media.
J. theor. Biol. 42: 483-504 (1973). MEDLINE.

Durston, A. J., Cohen, M. H., Drage, D. J., Potel, M. J., Robertson, A. & Wonio, D.
Periodic movements of Dictyostelium discoideum sorocarps.
Dev. Biol. 52: 173-180 (1976).

Dusenbery, D. B.
Avoided temterature leads to the surface: computer modeling of slime mold and nematode thermotaxis.
Behav. Ecol. Sociobiol. 22: 219-223 (1988).

Dworkin, M. & Keller, K. H.
Solubility and diffusion coefficient of adenosine 3':5'-monophosphate.
J. Biol. Chem. 252: 864-865 (1977). MEDLINE.

Feit, I. N. & Sollitto, R. B.
Ammonia is the gas used for the spacing of fruiting bodies in the cellular slime mold, Dictyostelium discoideum.
Differentiation 33: 193-196 (1987).

Fisher, P. R.
The role of gaseous metabolites in phototaxis by Dictyostelium discoideum slugs.
FEMS Microbiol. Lett. 77: 117-120 (1991).

Fisher, P. R.
Genetics of phototaxis in a model eukaryote, Dictyostelium discoideum.
Bioessays 19: 397-407 (1997). MEDLINE.

Fisher, P. R., Häder, D.-P. & Williams, K. L.
Multidirectional phototaxis by Dictyostelium discoideum amoebae.
FEMS Microbiol. Lett. 29: 43-47 (1985).

Fisher, P. R. & Williams, K. L.
Bidirectional phototaxis by Dictyostelium discoideum slugs.
FEMS Microbiol. Lett. 12: 87-89 (1981).

FitzHugh, R.
Thresholds and plateaus in the Hodgkin-Huxley nerve equations.
J. Gen. Physiol. 43: 867-896 (1960).

FitzHugh, R.
Impulses and physiological states in theoretical models of nerve membrane.
Biophys. J. 1: 445-466 (1961).

Foerster, P., Müller, S. C. & Hess, B.
Curvature and spiral geometry in aggregation patterns of Dictyostelium discoideum.
Development 109: 11-16 (1990).

Fontana, D. R.
Dictyostelium discoideum cohesion and adhesion.
In Principles of cell adhesion, edited by P. D. Richardson & M. Steiner, pp. 63-86. CRC Press, Boca Raton (1995).

Francis, D. W.
Some studies on phototaxis of Dictyostelium.
J. Cell. Comp. Physiol. 64: 131-138 (1964).

Gerhardt, M., Schuster, H. & Tyson, J. J.
A cellular automation model of excitable media including curvature and dispersion.
Science 247: 1563-1566 (1990). MEDLINE.

Ginger, R. S., Drury, L., Baader, C., Zhukovskaya, N. V. & Williams, J. G.
A novel Dictyostelium cell surface protein important for both cell adhesion and cell sorting.
Development 125: 3343-3352 (1998). MEDLINE.

Glazier, J. A., Anderson, M. P. & Grest, G. S.
Coarsening in the 2-dimensional soap froth and the large Q-Potts-model - a detailed comparison.
Phil. Mag. B 62: 615-645 (1990).

Glazier, J. A. & Graner, F.
Simulation of the differential adhesion driven rearrangement of biological cells.
Phys. Rev. E 47: 2128-2154 (1993).

Graner, F.
Can surface adhesion drive cell-rearrangement? Part I: Biological cell-sorting.
J. theor. Biol. 164: 455-476 (1993).

Graner, F. & Glazier, J. A.
Simulation of biological cell sorting using a two-dimensional extended Potts model.
Phys. Rev. Lett. 69: 2013-2016 (1992). MEDLINE.

Graner, F. & Sawada, Y.
Can surface adhesion drive cell rearrangement? Part II: A geometrical model.
J. theor. Biol. 164: 477-506 (1993).

Grimson, M. J., Haigler, C. H. & Blanton, R. L.
Cellulose microfibrils, cell motility, and plasma membrane protein organization change in parallel during culmination in Dictyostelium discoideum.
J. Cell Sci. 109: 3079-3087 (1996). MEDLINE.

Grindrod, P.
Plane waves.
In The theory and applications of reaction-diffusion equations: patterns and waves, Oxford applied mathematics and computing science series, pp. 114-156. Clarendon Press, Oxford, 2nd edition (1996).

Häder, D.-P. & Burkart, U.
Optical properties of Dictyostelium discoideum pseudoplasmodia responsible for phototactic orientation.
Exp. Mycol. 7: 1-8 (1983).

Hagberg, A. & Meron, E.
From labyrinthine patterns to spiral turbulence.
Phys. Rev. Lett. 72: 2494-2497 (1994). MEDLINE.

Harwood, A. J., Hopper, N. A., Simon, M.-N., Driscoll, D. M., Veron, M. & Williams, J. G.
Culmination in Dictyostelium is regulated by the cAMP-dependent protein kinase.
Cell 69: 615-624 (1992). MEDLINE.

Haser, H. & Häder, D.-P.
Orientation and phototaxis in pseudoplasmodia of an axenic strain of the cellular slime mold, Dictyostelium discoideum.
Exp. Mycol. 16: 119-131 (1992).

Higuchi, G. & Yamada, T.
A cinematographical study of cellular slime molds. I. Stalk and disk formation in Dictyostelium discoideum.
Cytologia 49: 841-849 (1984).

Hodgkin, A. L. & Huxley, A. F.
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J. Physiol. 117: 500-544 (1952).

Höfer, T., Sherratt, J. A. & Maini, P. K.
Cellular pattern formation during Dictyostelium aggregation.
Physica D 85: 425-444 (1995a).

Höfer, T., Sherratt, J. A. & Maini, P. K.
Dictyostelium discoideum: cellular self-organization in an excitable biological medium.
Proc. R. Soc. Lond. Ser. B 259: 249-257 (1995b). MEDLINE.

Hogeweg, P.
On searching generic properties of non generic phenomena: an approach to bioinformatic theory formation.
In Artificial Life VI: Proceedings of the Sixth International Conference on Artificial Life, edited by C. Adami, R. K. Belew, H. Kitano & C. E. Taylor, pp. 285-294. MIT Press, Cambridge, MA (1998).

Hogeweg, P.
Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation.
J. theor. Biol. 203: 317-333 (2000a). MEDLINE.

Hogeweg, P.
Shapes in the shadow: evolutionary dynamics of morphogenesis.
Artif. Life 6: 85-101 (2000b). MEDLINE.

Horváth, D., Petrov, V., Scott, S. K. & Showalter, K.
Instabilities in propagating reaction-diffusion fronts.
J. Chem. Phys. 98: 6332-6343 (1993).

Inouye, K. & Takeuchi, I.
Analytical studies on migrating movement of the pseudoplasmodium of Dictyostelium discoideum.
Protoplasma 99: 289-304 (1979).

Ising, E.
Beitrag zur Theorie des Ferromagnetismus.
Zeitschr. f. Physik 31: 235-258 (1925).

Ito, H. & Glass, L.
Spiral breakup in a new model of discrete excitable media.
Phys. Rev. Lett. 66: 671-674 (1991). MEDLINE.

Jahnke, W., Henze, C. & Winfree, A. T.
Chemical vortex dynamics in three-dimensional excitable media.
Nature 336: 662-665 (1988).

Jermyn, K., Traynor, D. & Williams, J.
The initiation of basal disc formation in Dictyostelium discoideum is an early event in culmination.
Development 122: 753-760 (1996). MEDLINE.

Jermyn, K. A. & Williams, J. G.
An analysis of culmination in Dictyostelium using prestalk and stalk- specific cell autonomous markers.
Development 111: 779-787 (1991). MEDLINE.

Jiang, Y., Levine, H. & Glazier, J.
Possible cooperation of differential adhesion and chemotaxis in mound formation of Dictyostelium.
Biophys. J. 75: 2615-2625 (1998). MEDLINE.

Karma, A.
Spiral breakup in model equations of action potential propagation in cardiac tissue.
Phys. Rev. Lett. 71: 1103-1106 (1993). MEDLINE.

Karma, A.
Electrical alternans and spiral wave breakup in cardiac tissue.
Chaos 4: 461-472 (1994).

Kauffman, S. A.
Pattern formation in the Drosophila embryo.
Phil. Trans. R. Soc. Lond. Ser. B 295: 567-594 (1981). MEDLINE.

Kauffman, S. A., Shymko, R. M. & Trabert, K.
Control of sequential compartment formation in Drosophila.
Science 199: 259-270 (1978). MEDLINE.

Kawasaki, K., Mochizuki, A., Matsushita, M., Umeda, T. & Shigesada, N.
Modeling spatio-temporal patterns generated by Bacillus subtilis.
J. theor. Biol. 188: 177-185 (1997). MEDLINE.

Kawasaki, Y., Kiryu, T., Usui, K. & Mizutani, H.
Growth of the cellular slime mold, Dictyostelium discoideum, is gravity dependent.
Plant Physiol. 93: 1568-1572 (1990).

Kay, R. R.
DIF signalling.
In Dictyostelium: a model system for cell and developmental biology, edited by Y. Maeda, K. Inouye & I. Takeuchi, pp. 279-292. Universal Academy Press, Tokyo (1997).

Keener, J. P.
An eikonal-curvature equation for action potential propagation in myocardium.
J. Math. Biol. 29: 629-651 (1991). MEDLINE.

Keller, E. F. & Segel, L. A.
Initiation of slime mold aggregation viewed as an instability.
J. theor. Biol. 26: 399-415 (1970). MEDLINE.

Kellerman, K. A. & McNally, J. G.
Mound-cell movement and morphogenesis in Dictyostelium.
Dev. Biol. 208: 416-429 (1999). MEDLINE.

Kerszberg, M. & Wolpert, L.
Mechanisms for positional signalling by morphogen transport: a theoretical study.
J. theor. Biol. 191: 103-114 (1998). MEDLINE.

Kessin, R. H.
The evolution of the cellular slime molds.
In Dictyostelium: a model system for cell and developmental biology, edited by Y. Maeda, K. Inouye & I. Takeuchi, pp. 3-13. Universal Academy Press, Tokyo (1997).

Kessin, R. H., Gundersen, G. G., Zaydfudim, V., Grimson, M. & Blanton, R. L.
How cellular slime molds evade nematodes.
Proc. Natl. Acad. Sci. U.S.A. 93: 4857-4861 (1996). MEDLINE.

Kessler, D. A. & Levine, H.
Stability of traveling waves in the Belousov-Zhabotinskii reaction.
Phys. Rev. A 41: 5418-5430 (1990).

Kitami, M.
Chemotactic response of Dictyostelium discoideum cell to c-AMP at the culmination stage.
Cytologia 49: 257-264 (1984).

Kitami, M.
Motive force of the culminating mass of cells in the developing fruiting body of Dictyostelium discoideum.
Cytologia 50: 109-115 (1985).

Kosugi, T. & Inouye, K.
Negative chemotaxis to ammonia and other weak bases by migrating slugs of the cellular slime moulds.
J. Gen. Microbiol. 135: 1589-1598 (1989).

Kuramoto, Y.
Instability and turbulence of wavefronts in reaction-diffusion systems.
Prog. Theor. Phys. 63: 1885-1903 (1980).

Lauzeral, J., Halloy, J. & Goldbeter, A.
Desynchronization of cells on the developmental path triggers the formation of spiral waves of cAMP during Dictyostelium aggregation.
Proc. Natl. Acad. Sci. U.S.A. 94: 9153-9158 (1997). MEDLINE.

Lechleiter, J., Girard, S., Peralta, E. & Clapham, D.
Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes.
Science 252: 123-126 (1991). MEDLINE.

Levine, H., Aranson, I., Tsimring, L. & Truong, T. V.
Positive genetic feedback governs cAMP spiral wave formation in Dictyostelium.
Proc. Natl. Acad. Sci. U.S.A. 93: 6382-6386 (1996). MEDLINE.

Levine, H. & Reynolds, W.
Streaming instability of aggregating slime mold amoebae.
Phys. Rev. Lett. 66: 2400-2403 (1991). MEDLINE.

Levine, H., Tsimring, L. & Kessler, D.
Computational modeling of mound development in Dictyostelium.
Physica D 106: 375-388 (1997).

Loomis, W. F.
The Dictyostelium genome sequencing project [online] <dicty.cmb.nwu.edu/dicty/genomeseq.htm> (2000).

Ludwig, D., Aronson, D. G. & Weinberger, H. F.
Spatial patterning of the spruce budworm.
J. Math. Biol. . 8: 217-258 (1979).

MacKay, S. A.
Computer simulation of aggregation in Dictyostelium discoideum.
J. Cell Sci. 33: 1-16 (1978). MEDLINE.

MacWilliams, H. K.
Transplantation experiments and pattern mutants in cellular slime mold slugs.
In Developmental order: its origin and regulation, edited by S. S. Subtelny & P. B. Green, pp. 463-483. A. R. Liss, New York (1982).

Maeda, M.
Functional analysis [online] <www.csm.biol.tsukuba.ac.jp/function.html> (2000).

Maeda, Y., Inouye, K. & Takeuchi, I. (editors).
Dictyostelium: a model system for cell and developmental biology.
Number 21 in Frontiers science series. Universal Academy Press, Tokyo (1997).

Marée, A. F. M., Keulen, W., Boucher, C. A. B. & de Boer, R. J.
Estimating relative fitness in viral competition experiments.
accepted for publication in J. Virol.

Markus, M., Kloss, G. & Kusch, I.
Disordered waves in a homogeneous, motionless excitable medium.
Nature 371: 402-404 (1994).

Markus, M. & Stavridis, K.
Observation of chemical turbulence in the Belousov-Zhabotinsky reaction.
Int. J. Bifurc. Chaos 4: 1233-1243 (1994a).

Markus, M. & Stavridis, K.
Wavefront deformations in excitable media: chemical lenses and ripples.
Phil. Trans. R. Soc. Lond. Ser. A 347: 601-609 (1994b).

Martiel, J.-L. & Goldbeter, A.
A model based on receptor desensitization for cyclic AMP signaling in Dictyostelium cells.
Biophys. J. 52: 807-828 (1987).

Matsuyama, T., Takagi, Y., Nakagawa, Y., Itoh, H., Wakita, J. & Matsushita, M.
Dynamic aspects of the structured cell population in a swarming colony of Proteus mirabilis.
J. Bacteriol. 182: 385-393 (2000). MEDLINE.

Maynard Smith, J. & Szathmáry, E.
The Major Transitions in Evolution.
W. H. Freeman Spektrum, Oxford (1995).

Meinhardt, H.
A model for the prestalk/prespore patterning in the slug of the slime mold Dictyostelium discoideum.
Differentiation 24: 191-202 (1983). MEDLINE.

Miura, K. & Siegert, F.
Light affects cAMP signaling and cell movement activity in Dictyostelium discoideum.
Proc. Natl. Acad. Sci. U.S.A. 97: 2111-2116 (2000). MEDLINE.

Mostow, G. D. (editor).
Mathematical models for cell rearrangement.
Yale University Press, London (1975).

Müller, V., Marée, A. F. M. & de Boer, R. J.
Release of virus from lymphoid tissue affects HIV-1 and HCV kinetics in the blood.
submitted.

Müller, V., Marée, A. F. M. & de Boer, R. J.
Small variations in multiple parameters account for wide variations in HIV-1 set points: a novel modeling approach.
submitted.

Murray, J. D.
Mathematical Biology, volume 19 of Biomathematics.
Springer-Verlag, Berlin, 2nd edition (1993).

Murray, J. D. & Swanson, K. R.
On the mechanochemical theory of biological pattern formation with applications to wound healing and angiogenesis.
In On Growth and Form: Spatio-temporal Pattern Formation in Biology, edited by M. A. J. Chaplain, G. D. Singh & J. C. McLachlan, Wiley series in mathematical and computational biology, pp. 251-285. John Wiley & Sons, Chichester (1999).

Nagumo, J. S., Arimoto, S. & Yoshizawa, S.
An active pulse transmission line simulating nerve axon.
Proc. IRE 50: 2061-2071 (1962).

Nagy-Ungvarai, Zs. & Müller, S. C.
Characterization of wave front instabilities in the Belousov-Zhabotinsky reaction: an overview.
Int. J. Bifurc. Chaos 4: 1257-1264 (1994).

Nanjundiah, V.
Chemotaxis, signal relaying and aggregation morphology.
J. theor. Biol. 42: 63-105 (1973). MEDLINE.

Nanjundiah, V.
Models for pattern formation in the dictyostelid slime molds.
In Dictyostelium: a model system for cell and developmental biology, edited by Y. Maeda, K. Inouye & I. Takeuchi, pp. 305-322. Universal Academy Press, Tokyo (1997).

Newell, P. C. & Gross, J. D.
Restriction enzyme mediated integration in Dictyostelium discoideum [online] <www.bioch.ox.ac.uk/~pcnlab/remi.html> (2000).

Nusslein-Volhard, C.
Determination of the embryonic axes of Drosophila.
Development Suppl: 1-10 (1991). MEDLINE.

O'Day, D.
Macrocyst world: the sexual cycle of Dictyostelium and other CSM species [online] <www.erin.utoronto.ca/~w3oday/MACWORLD4.html> (2000).

Odell, G. M. & Bonner, J. T.
How the Dictyostelium discoideum grex crawls.
Phil. Trans. R. Soc. Lond. Ser. B 312: 487-525 (1986).

Ohta, T., Mimura, M. & Kobayashi, R.
Higher-dimensional localized patterns in excitable media.
Physica D 34: 115-144 (1989).

van Oss, C., Panfilov, A. V., Hogeweg, P., Siegert, F. & Weijer, C. J.
Spatial pattern formation during aggregation of the slime mould Dictyostelium discoideum.
J. theor. Biol. 181: 203-213 (1996). MEDLINE.

Othmer, H. G. & Schaap, P.
Oscillatory cAMP signaling in the development of Dictyostelium discoideum.
Comments Theor. Biol. 5: 175-282 (1998).

Ouyang, Q. & Flesselles, J.-M.
Transition from spirals to defect turbulence driven by a convective instability.
Nature 379: 143-146 (1996).

Palková, Z., Janderová, B., Gabriel, J., Zikánová, B., Pospíšek, M. & Forstová, J.
Ammonia mediates communication between yeast colonies.
Nature 390: 532-536 (1997). MEDLINE.

Pálsson, E. & Cox, E. C.
Origin and evolution of circular waves and spirals in Dictyostelium discoideum territories.
Proc. Natl. Acad. Sci. U.S.A. 93: 1151-1155 (1996). MEDLINE.

Panfilov, A. V.
Three dimensional vortices in active media.
In Nonlinear wave processes in excitable media, edited by A. V. Holden, M. Markus & H. G. Othmer, volume 244 of NATO ASI series B: physics, pp. 361-381. Plenum Press, New York (1991).

Panfilov, A. V. & Hogeweg, P.
Spiral breakup in a modified FitzHugh-Nagumo model.
Phys. Lett. A 176: 295-299 (1993).

Panfilov, A. V. & Hogeweg, P.
Mechanisms of cardiac fibrillation.
Science 270: 1223-1224 (1995), and response by A. T. Winfree, ibid. 270: 1224-1225 (1995). MEDLINE.

Panfilov, A. V. & Hogeweg, P.
Scroll breakup in a three-dimensional excitable medium.
Phys. Rev. E 53: 1740-1743 (1996).

Panfilov, A. V. & Holden, A. V.
Self-generation of turbulent vortices in a two-dimensional model of cardiac tissue.
Phys. Lett. A 151: 23-26 (1990).

Panfilov, A. V. & Holden, A. V. (editors).
Computational biology of the heart.
John Wiley & Sons, Chichester (1997).

Panfilov, A. V. & Pertsov, A. M.
Vortex ring in a three-dimensional active medium described by reaction-diffusion equations.
Dokl. Akad. Nauk SSSR 274: 1500-1503 (1984). MEDLINE.

Parnas, H. & Segel, L. A.
Computer evidence concerning the chemotactic signal in Dictyostelium discoideum.
J. Cell Sci. 25: 191-204 (1977). MEDLINE.

Parnas, H. & Segel, L. A.
A computer simulation of pulsatile aggregation in Dictyostelium discoideum.
J. theor. Biol. 71: 185-207 (1978). MEDLINE.

Poff, K. L., Fontana, D. R., Häder, D.-P. & Schneider, M. J.
An optical model for phototactic orientation in Dictyostelium discoideum slugs.
Plant Cell Physiol. 27: 533-539 (1986).

Potts, R. B.
Some generalized order-disorder transformations.
Proc. Camb. Phil. Soc. 48: 106-109 (1952).

Raper, K. B.
Pseudoplasmodium formation and organization in Dictyostelium discoideum.
J. Elisha Mitchell Sci. Soc. 56: 241-282 (1940).

Rubinow, S. I., Segel, L. A. & Ebel, W.
A mathematical framework for the study of morphogenetic development in the slime mold.
J. theor. Biol. 91: 99-113 (1981).

Savill, N. J. & Hogeweg, P.
Modeling morphogenesis: from single cells to crawling slugs.
J. theor. Biol. 184: 229-235 (1997).

Savill, N. J. & Hogeweg, P.
Competition and dispersal in predator-prey waves.
Theor. Popul. Biol. 56: 243-263 (1999). MEDLINE.

Schaap, P., Tang, Y. & Othmer, H. G.
A model for pattern formation in Dictyostelium discoideum.
Differentiation 60: 1-16 (1996).

Schindler, J. & Sussman, M.
Inhibition by ammonia of intracellular cAMP accumulation in Dictyostelium discoideum: its significance for the regulation of morphogenesis.
Dev. Genet. 1: 13-20 (1979).

Segel, L. A., Goldbeter, A., Devreotes, P. N. & Knox, B. E.
A mechanism for exact sensory adaptation based on receptor modification.
J. theor. Biol. 120: 151-179 (1986). MEDLINE.

Sekimura, T. & Kobuchi, Y.
A spatial pattern formation model for Dictyostelium discoideum.
J. theor. Biol. 122: 325-338 (1986).

Shibata, M. & Bures, J.
Reverberation of cortical spreading depression along closed-loop pathways in rat cerebral cortex.
J. Neurophysiol. 35: 381-388 (1972). MEDLINE.

Siegert, F. & Weijer, C.
Digital image processing of optical density wave propagation in Dictyostelium discoideum and analysis of the effects of caffeine and ammonia.
J. Cell Sci. 93: 325-335 (1989).

Siegert, F. & Weijer, C. J.
Analysis of optical density wave propagation and cell movement in the cellular slime mould Dictyostelium discoideum.
Physica D 49: 224-232 (1991).

Siegert, F. & Weijer, C. J.
Three-dimensional scroll waves organize Dictyostelium slugs.
Proc. Natl. Acad. Sci. U.S.A. 89: 6433-6437 (1992). MEDLINE.

Smith, D.
Completed and near-complete 80 REMI genes [online] <glamdring.ucsd.edu/others/dsmith/REMIgenes2000.html> (2000).

Smith, E., Fisher, P. R., Grant, W. N. & Williams, K. L.
Sensory behaviour in Dictyostelium discoideum slugs: phototaxis and thermotaxis are not mediated by a change in slug speed.
J. Cell Sci. 54: 329-339 (1982).

Smith, E. & Williams, K. L.
Preparation of slime sheath from Dictyostelium discoideum.
FEMS Microbiol. Lett. 6: 119-122 (1979).

Stavroudis, O. N.
Ray tracing.
In The optics of rays, wavefronts, and caustics, volume 38 of Pure and applied physics, pp. 81-103. Academic Press, New York (1972).

Steinberg, M.
Reconstruction of tissues by dissociated cells.
Science 141: 401-408 (1963).

Steinbock, O., Siegert, F., Müller, S. C. & Weijer, C. J.
Three-dimensional waves of excitation during Dictyostelium morphogenesis.
Proc. Natl. Acad. Sci. U.S.A. 90: 7332-7335 (1993). MEDLINE.

Sternfeld, J.
Evidence for differential cellular adhesion as the mechanism of sorting-out of various cellular slime mold species.
J. Embryol. Exp. Morph. 53: 163-178 (1979). MEDLINE.

Sternfeld, J.
A study of PstB cells during Dictyostelium migration and culmination reveals a unidirectional cell type conversion process.
Roux's Arch. Dev. Biol. 201: 354-363 (1992).

Sternfeld, J.
The anterior-like cells in Dictyostelium are required for the elevation of the spores during culmination.
Dev. Genes Evol. 208: 487-494 (1998). MEDLINE.

Sternfeld, J. & David, C. N.
Cell sorting during pattern formation in Dictyostelium.
Differentiation 20: 10-21 (1981).

Takeuchi, I., Kakutani, T. & Tasaka, M.
Cell behavior during formation of prestalk/prespore pattern in submerged agglomerates of Dictyostelium discoideum.
Dev. Genet. 9: 607-614 (1988). MEDLINE.

Tang, Y. & Othmer, H. G.
A G protein-based model of adaptation in Dictyostelium discoideum.
Math. Biosci. 120: 25-76 (1994). MEDLINE.

Tasaka, M. & Takeuchi, I.
Role of cell sorting in pattern formation in Dictyostelium discoideum.
Differentiation 18: 191-196 (1981). MEDLINE.

Thomason, P., Traynor, D. & Kay, R.
Taking the plunge. Terminal differentiation in Dictyostelium.
Trends Genet. 15: 15-19 (1999). MEDLINE.

Tsyganov, I. M., Tsyganov, M. A., Medvinsky, A. B. & Ivanitsky, G. R.
Processes of selforganization in highly excitable media: open catalog of new structures.
Dokl. Akad. Nauk 346: 825-832 (1996).

Turing, A. M.
The chemical basis of morphogenesis.
Phil. Trans. Roy. Soc. Lond. B 237: 37-72 (1952).

Tyson, J. J., Alexander, K. A., Manoranjan, V. S. & Murray, J. D.
Spiral waves of cyclic AMP in a model of slime mold aggregation.
Physica D 34: 193-207 (1989).

Tyson, J. J. & Murray, J. D.
Cyclic AMP waves during aggregation of Dictyostelium amoebae.
Development 106: 421-426 (1989). MEDLINE.

Umeda, T.
A mathematical model for cell sorting, migration and shape in the slug stage of Dictyostelium discoideum.
Bull. Math. Biol. 51: 485-500 (1989).

Vaessen, E. P. B.
Calcium waves: a(nother) way of looking at calcium waves.
Master's thesis, University of Utrecht (1999).

Vasiev, B. N., Hogeweg, P. & Panfilov, A. V.
Simulation of Dictyostelium discoideum aggregation via reaction-diffusion model.
Phys. Rev. Lett. 73: 3173-3176 (1994). MEDLINE.

Verkerke-van Wijk, I & Schaap, P.
cAMP, a signal for survival.
In Dictyostelium: a model system for cell and developmental biology, edited by Y. Maeda, K. Inouye & I. Takeuchi, pp. 145-162. Universal Academy Press, Tokyo (1997).

Wang, B. & Kuspa, A.
Dictyostelium development in the absence of cAMP.
Science 277: 251-254 (1997). MEDLINE.

Watts, D. J. & Treffry, T. E.
Culmination in the slime mould Dictyostelium discoideum studied with a scanning electron microscope.
J. Embryol. Exp. Morphol. 35: 323-333 (1976). MEDLINE.

Weijer, C. J., McDonald, S. A. & Durston, A. J.
A frequency difference in optical-density oscillations of early Dictyostelium discoideum density classes and its implications for development.
Differentiation 28: 9-12 (1984).

Whitaker, B. D. & Poff, K. L.
Thermal adaptation of thermosensing and negative thermotaxis in Dictyostelium.
Exp. Cell Res. 128: 87-93 (1980). MEDLINE.

Wilkins, M. R. & Williams, K. L.
The extracellular matrix of the Dictyostelium discoideum slug.
Experientia 51: 1189-1196 (1995). MEDLINE.

Williams, G. B., Elder, E. M. & Sussman, M.
Modulation of the cAMP relay in Dictyostelium discoideum by ammonia and other metabolites: possible morphogenetic consequences.
Dev. Biol. 105: 377-388 (1984). MEDLINE.

Williams, J.
Prestalk and stalk cell heterogeneity in Dictyostelium.
In Dictyostelium: a model system for cell and developmental biology, edited by Y. Maeda, K. Inouye & I. Takeuchi, pp. 293-304. Universal Academy Press, Tokyo (1997).

Williams, J., Hopper, N., Early, A., Traynor, D., Harwood, A., Abe, T., Simon, M. N. & Véron, M.
Interacting signalling pathways regulating prestalk cell differentiation and movement during the morphogenesis of Dictyostelium.
Development Suppl: 1-7 (1993). MEDLINE.

Williams, J. G.
The role of diffusible molecules in regulating the cellular differentiation of Dictyostelium discoideum.
Development 103: 1-16 (1988).

Williams, J. G., Jermyn, K. A. & Duffy, K. T.
Formation and anatomy of the prestalk zone of Dictyostelium.
Development Suppl: 91-97 (1989). MEDLINE.

Williams, K. L., Vardy, P. H. & Segel, L. A.
Cell migrations during morphogenesis: some clues from the slug of Dictyostelium discoideum.
Bioessays 5: 148-152 (1986). MEDLINE.

Winfree, A. T.
Spiral waves of chemical activity.
Science 175: 634-636 (1972).

Winfree, A. T.
Electrical instability in cardiac muscle: phase singularities and rotors.
J. theor. Biol. 138: 353-405 (1989). MEDLINE.

Winfree, A. T.
Electrical turbulence in three-dimensional heart muscle.
Science 266: 1003-1006 (1994). MEDLINE.

Winfree, A. T. & Strogatz, S. H.
Organizing centres for three-dimensional chemical waves.
Nature 311: 611-615 (1984). MEDLINE.

Wolpert, L.
Positional information and the spatial pattern of cellular differentiation.
J. theor. Biol. 25: 1-47 (1969). MEDLINE.

Yumura, S., Kurata, K. & Kitanishi-Yumura, T.
Concerted movement of prestalk cells in migrating slugs of Dictyostelium revealed by the localization of myosin.
Dev. Growth Differ. 34: 319-328 (1992).

Zeeman, E. C.
Slime mold culmination.
In Catastrophe theory: selected papers, pp. 216-233. Addison-Wesley, Reading, Massachusetts (1977).



next up previous contents
Next: Samenvatting Up: From Pattern Formation to Morphogenesis Previous: 7. Summarising Discussion   Contents