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Chapter 3

Equilibrium types in 2D systems



Equilibrium types

1D systems:

Two regions, left and right of an equilibrium.

Arrows can point away or toward the equilibrium.

So two equilibrium types possible: stable and unstable.

At bifurcation point special case: stable and unstable sides.

2D systems:

Four regions around an equilibrium point.

Arrows can point away or toward the equilibrium, or both!

Six different equilibrium types possible, two of which are stable.
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Vectorfield: all arrows point to equilibrium → stable node

Phase portrait gives same information as numerical solutions
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Equilibrium types: stable node (2)
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Compare: different nullclines, similar vectorfield!
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Vectorfield: arrows only suggest rotation!
Phase portrait gives less information than numerical solutions...
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Vectorfield insufficient

Sometimes the vectorfield does not give enough information:

All vectorfields suggest rotation, but we may even have a node!
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Self-feedback: when and how

First look at the entire vectorfield:
is it clearly a stable node, unstable node, saddle?

YES: you are finished!
NO: look at self-feedback

Self-feedback:
Feedback of x variable on itself

add a little x (small horizontal step from eq. to the right)
does x increase or decreases (horizontal vector to left or right)

Feedback of y variable on itself
add a little y (small vertical step from eq. upwards)
does y increase or decreases (vertical vector up or down)
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Self-feedback: example

predator-prey system:

{ dx
dt = 3x(1− x)− 1.5xy
dy
dt = 0.5xy − 0.25y

x null-clines:
x=0 and y=2-2x

y null-clines
y=0 and x=0.5

2

0.5 1

x

y

0

x : negative feedback on itself: convergence back to equilibrium
y : zero feedback on itself: no convergence nor divergence

net negative feedback: net convergence back to equilibrium

stable equilibrium! (probably stable spiral)
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Self-feedback: summary
Self-feedback and stability:

Stable
x and y have negative feedback on themselves
x has negative and y has zero feedback on itself
x has zero and y has negative feedback on itself

Unstable
x and y have positive feedback on themselves
x has positive and y has zero feedback on itself
x has zero and y has positive feedback on itself

Undetermined
x has positive and y has negative feedback on itself
x has negative and y has positive feedback on itself

Net feedback negative → stable equilibrium
Net feedback positive → unstable equilibrium

Note that from self-feedback we can not determine equilibrium type!
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An overview of 2D equilibria

An equilibrium is only stable, if all directions converge on it. One or more
diverging directions means that the equilibrium is unstable.

Stable equilibria:
stable node: two stable directions (sometimes rotation)
stable spiral: rotation, net negative self-feedback

Unstable equilibria:
unstable node: two unstable directions (sometimes rotation)
saddle node: one stable and one unstable direction
unstable spiral: rotation, net positive self-feedback

A center point is neutrally stable:
rotation, net zero self-feedback
neither convergence nor divergence
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