Systems Biology: Mathematics for Biologists

Kirsten ten Tusscher, Theoretical Biology, UU

Chapter 3

Equilibrium types in 2D systems

Equilibrium types

1D systems:

- Two regions, left and right of an equilibrium.
- Arrows can point away or toward the equilibrium.
- So two equilibrium types possible: stable and unstable.
- At bifurcation point special case: stable and unstable sides.

Equilibrium types

1D systems:

- Two regions, left and right of an equilibrium.
- Arrows can point away or toward the equilibrium.
- So two equilibrium types possible: stable and unstable.
- At bifurcation point special case: stable and unstable sides.

2D systems:

- Four regions around an equilibrium point.
- Arrows can point away or toward the equilibrium, or both!
- Six different equilibrium types possible, two of which are stable.

Equilibrium types: stable node

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-2 x+y \\
\frac{d y}{d t}=x-2 y
\end{array}\right.
$$

Equilibrium types: stable node

Null-clines:

$$
\begin{cases}\frac{d x}{d t}=-2 x+y & y=2 x \\ \frac{d y}{d t}=x-2 y & y=\frac{1}{2} x\end{cases}
$$

Equilibrium types: stable node

Null-clines: fill in point $(1,0)$:

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=-2 x+y & y=2 x & \frac{d x}{d t}=-2 * 1+0=-2<0 \\
\frac{d y}{d t}=x-2 y & y=\frac{1}{2} x & \frac{d y}{d t}=1-0=1>0 \text { so } \uparrow
\end{array}\right.
$$

Equilibrium types: stable node

Null-clines: fill in point $(1,0)$:

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=-2 x+y & y=2 x & \frac{d x}{d t}=-2 * 1+0=-2<0 \text { so } \leftarrow \\
\frac{d y}{d t}=x-2 y & y=\frac{1}{2} x & \frac{d y}{d t}=1-0=1>0 \text { so } \uparrow
\end{array}\right.
$$

Vectorfield: all arrows point to equilibrium \rightarrow stable node

Equilibrium types: stable node

Null-clines: fill in point $(1,0)$:

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=-2 x+y & y=2 x & \frac{d x}{d t}=-2 * 1+0=-2<0 \text { so } \leftarrow \\
\frac{d y}{d t}=x-2 y & y=\frac{1}{2} x & \frac{d y}{d t}=1-0=1>0 \text { so } \uparrow
\end{array}\right.
$$

Vectorfield: all arrows point to equilibrium \rightarrow stable node
Phase portrait gives same information as numerical solutions

Equilibrium types: stable node (2)

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-2 x-y \\
\frac{d y}{d t}=-x-2 y
\end{array}\right.
$$

Equilibrium types: stable node (2)

Null-clines:

$$
\begin{cases}\frac{d x}{d t}=-2 x-y & y=-2 x \\ \frac{d y}{d t}=-x-2 y & y=-\frac{1}{2} x\end{cases}
$$

Equilibrium types: stable node (2)

Null-clines: fill in point $(1,0)$:

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=-2 x-y & y=-2 x & \frac{d x}{d t}=-2 * 1-0=-2<0 \text { so } \leftarrow \\
\frac{d y}{d t}=-x-2 y & y=-\frac{1}{2} x & \frac{d y}{d t}=-1-2 * 0=-1<0 \text { so } \downarrow
\end{array}\right.
$$

Equilibrium types: stable node (2)

Null-clines: fill in point $(1,0)$:

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=-2 x-y & y=-2 x & \frac{d x}{d t}=-2 * 1-0=-2<0 \text { so } \leftarrow \\
\frac{d y}{d t}=-x-2 y & y=-\frac{1}{2} x & \frac{d y}{d t}=-1-2 * 0=-1<0 \text { so } \downarrow
\end{array}\right.
$$

Vectorfield: all arrows point to equilibrium \rightarrow stable node

Equilibrium types: stable node (2)

Null-clines: fill in point $(1,0)$:

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=-2 x-y & y=-2 x & \frac{d x}{d t}=-2 * 1-0=-2<0 \text { so } \leftarrow \\
\frac{d y}{d t}=-x-2 y & y=-\frac{1}{2} x & \frac{d y}{d t}=-1-2 * 0=-1<0 \text { so } \downarrow
\end{array}\right.
$$

Vectorfield: all arrows point to equilibrium \rightarrow stable node
Compare: different nullclines, similar vectorfield!

Equilibrium types: unstable node

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=2 x+y \\
\frac{d y}{d t}=x+2 y
\end{array}\right.
$$

Equilibrium types: unstable node

Null-clines:

$$
\begin{cases}\frac{d x}{d t}=2 x+y & y=-2 x \\ \frac{d y}{d t}=x+2 y & y=-\frac{1}{2} x\end{cases}
$$

Equilibrium types: unstable node

Null-clines: fill in $(1,0)$:

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=2 x+y & y=-2 x & \frac{d x}{d t}=2 * 1+0=2>0 \text { so } \rightarrow \\
\frac{d y}{d t}=x+2 y & y=-\frac{1}{2} x & \frac{d y}{d t}=1+2 * 0=1>0 \text { so } \uparrow
\end{array}\right.
$$

Equilibrium types: unstable node

Null-clines: fill in $(1,0)$:

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=2 x+y & y=-2 x & \frac{d x}{d t}=2 * 1+0=2>0 \text { so } \rightarrow \\
\frac{d y}{d t}=x+2 y & y=-\frac{1}{2} x & \frac{d y}{d t}=1+2 * 0=1>0 \text { so } \uparrow
\end{array}\right.
$$

Vectorfield: all arrows away from equilibrium \rightarrow unstable node

Equilibrium types: unstable node

Null-clines: fill in $(1,0)$:

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=2 x+y & y=-2 x & \frac{d x}{d t}=2 * 1+0=2>0 \text { so } \rightarrow \\
\frac{d y}{d t}=x+2 y & y=-\frac{1}{2} x & \frac{d y}{d t}=1+2 * 0=1>0 \text { so } \uparrow
\end{array}\right.
$$

x

Vectorfield: all arrows away from equilibrium \rightarrow unstable node
Compare: same nullclines, very different vectorfield

Equilibrium types: saddle point

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-x-2 y \\
\frac{d y}{d t}=-2 x-y
\end{array}\right.
$$

Equilibrium types: saddle point

Null-clines:
$\begin{cases}\frac{d x}{d t}=-x-2 y & y=-\frac{1}{2} x \\ \frac{d y}{d t}=-2 x-y & y=-2 x\end{cases}$

Equilibrium types: saddle point

Null-clines: fill in $(1,0)$:

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=-x-2 y & y=-\frac{1}{2} x & \frac{d x}{d t}=-1-2 * 0=-1<0 \text { so } \leftarrow \\
\frac{d y}{d t}=-2 x-y & y=-2 x & \frac{d y}{d t}=-2 * 1-0=-2<0 \text { s } 0 \downarrow
\end{array}\right.
$$

Equilibrium types: saddle point

Null-clines: fill in $(1,0)$:
$\left\{\begin{array}{lll}\frac{d x}{d t}=-x-2 y & y=-\frac{1}{2} x & \frac{d x}{d t}=-1-2 * 0=-1<0 \text { so } \leftarrow \\ \frac{d y}{d t}=-2 x-y & y=-2 x & \frac{d y}{d t}=-2 * 1-0=-2<0 \text { s } 0 \downarrow\end{array}\right.$

Vectorfield: one vector-pair points towards, one points away from equilibrium: stable and unstable direction \rightarrow saddle point

Equilibrium types: stable spiral

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-x+2 y \\
\frac{d y}{d t}=-2 x-y
\end{array}\right.
$$

Equilibrium types: stable spiral

Null-clines:

$$
\begin{cases}\frac{d x}{d t}=-x+2 y & y=\frac{1}{2} x \\ \frac{d y}{d t}=-2 x-y & y=-2 x\end{cases}
$$

Equilibrium types: stable spiral

Null-clines: fill in $(1,0)$:

$$
\begin{cases}\frac{d x}{d t}=-x+2 y & y=\frac{1}{2} x \\ \frac{d y}{d t}=-2 x-y & y=-2 x\end{cases}
$$

$$
\frac{d x}{d t}=-1+2 * 0=-1<0 \text { so } \leftarrow
$$

$$
\frac{d y}{d t}=-2 * 1-0=-2<0 \text { so } \downarrow
$$

Equilibrium types: stable spiral

Null-clines: fill in (1,0):

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=-x+2 y & y=\frac{1}{2} x & \frac{d x}{d t}=-1+2 * 0=-1<0 \text { so } \leftarrow \\
\frac{d y}{d t}=-2 x-y & y=-2 x & \frac{d y}{d t}=-2 * 1-0=-2<0 \text { so } \downarrow
\end{array}\right.
$$

Inward spiraling motion towards equilibrium
Oscillations with decreasing amplitude

Equilibrium types: stable spiral

Null-clines: fill in $(1,0)$:

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=-x+2 y & y=\frac{1}{2} x & \frac{d x}{d t}=-1+2 * 0=-1<0 \text { so } \leftarrow \\
\frac{d y}{d t}=-2 x-y & y=-2 x & \frac{d y}{d t}=-2 * 1-0=-2<0 \text { so } \downarrow
\end{array}\right.
$$

Inward spiraling motion towards equilibrium
Oscillations with decreasing amplitude
Vectorfield: arrows only suggest rotation!

Equilibrium types: stable spiral

Null-clines: fill in (1, 0):

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=-x+2 y & y=\frac{1}{2} x & \frac{d x}{d t}=-1+2 * 0=-1<0 \text { so } \leftarrow \\
\frac{d y}{d t}=-2 x-y & y=-2 x & \frac{d y}{d t}=-2 * 1-0=-2<0 \text { so } \downarrow
\end{array}\right.
$$

Inward spiraling motion towards equilibrium
Oscillations with decreasing amplitude
Vectorfield: arrows only suggest rotation!
Phase portrait gives less information than numerical solutions...

Equilibrium types: unstable spiral

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x+2 y \\
\frac{d y}{d t}=-2 x+y
\end{array}\right.
$$

Equilibrium types: unstable spiral

Null-clines:

$$
\begin{cases}\frac{d x}{d t}=x+2 y & y=-\frac{1}{2} x \\ \frac{d y}{d t}=-2 x+y & y=2 x\end{cases}
$$

Equilibrium types: unstable spiral

Null-clines: fill in $(1,0)$:

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=x+2 y & y=-\frac{1}{2} x & \frac{d x}{d t}=1+2 * 0=1>0 \text { so } \rightarrow \\
\frac{d y}{d t}=-2 x+y & y=2 x & \frac{d y}{d t}=-2 * 1+0=-2<0 \text { so } \downarrow
\end{array}\right.
$$

Equilibrium types: unstable spiral

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=x+2 y & \text { Null-clines: } & \text { fill in }(1,0): \\
\frac{d y}{d t}=-2 x+y & y=-\frac{1}{2} x & \frac{d x}{d t}=1+2 * 0=1>0 \text { so } \rightarrow \\
\frac{d y}{d t}=-2 * 1+0=-2<0 \text { so } \downarrow
\end{array}\right.
$$

Outward spiraling motion away from equilibrium Oscillations with increasing amplitude

Equilibrium types: unstable spiral

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=x+2 y & \text { Null-clines: } & \text { fill in }(1,0): \\
\frac{d y}{d t}=-2 x+y & y=-\frac{1}{2} x & \frac{d x}{d t}=1+2 * 0=1>0 \text { so } \rightarrow \\
\frac{d y}{d t}=-2 * 1+0=-2<0 \text { so } \downarrow
\end{array}\right.
$$

Outward spiraling motion away from equilibrium Oscillations with increasing amplitude

Vectorfield: arrows again only suggest rotation!

Equilibrium types: center point

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x+2 y \\
\frac{d y}{d t}=-2 x-y
\end{array}\right.
$$

Equilibrium types: center point

Null-clines:
$\begin{cases}\frac{d x}{d t}=x+2 y & y=-\frac{1}{2} x \\ \frac{d y}{d t}=-2 x-y & y=-2 x\end{cases}$

Equilibrium types: center point

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x+2 y \\
\frac{d y}{d t}=-2 x-y
\end{array}\right.
$$

Null-clines:
$y=-\frac{1}{2} x$
$y=-2 x$
fill in $(1,0)$:

$$
\begin{aligned}
& \frac{d x}{d t}=1+2 * 0=1>0 \text { so } \rightarrow \\
& \frac{d y}{d t}=-2 * 1-0=-2<0 \text { so } \downarrow
\end{aligned}
$$

Equilibrium types: center point

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=x+2 y & y=-\frac{1}{2} x & \frac{d x}{d t}=1+2 * 0=1>0 \text { so } \rightarrow \\
\frac{d y}{d t}=-2 x-y & y=-2 x & \frac{d y}{d t}=-2 * 1-0=-2<0 \text { so } \downarrow
\end{array}\right.
$$

Null-clines:
fill in $(1,0)$:

Rotation around equilibrium at constant distance
Oscillations amplitude determined by initial conditions

Equilibrium types: center point

$$
\left\{\begin{array}{lll}
\frac{d x}{d t}=x+2 y & y=-\frac{1}{2} x & \frac{d x}{d t}=1+2 * 0=1>0 \text { so } \rightarrow \\
\frac{d y}{d t}=-2 x-y & y=-2 x & \frac{d y}{d t}=-2 * 1-0=-2<0 \text { so } \downarrow
\end{array}\right.
$$

Null-clines:
fill in $(1,0)$:

Rotation around equilibrium at constant distance
Oscillations amplitude determined by initial conditions
Vectorfield: arrows again only suggest rotation!

Vectorfield insufficient

Sometimes the vectorfield does not give enough information:

Vectorfield insufficient

Sometimes the vectorfield does not give enough information:

Vectorfield insufficient

Sometimes the vectorfield does not give enough information:

Vectorfield insufficient

Sometimes the vectorfield does not give enough information:

Vectorfield insufficient

Sometimes the vectorfield does not give enough information:

All vectorfields suggest rotation, but we may even have a node!

Self-feedback: when and how

First look at the entire vectorfield:
is it clearly a stable node, unstable node, saddle?
YES: you are finished!
NO: look at self-feedback

Self-feedback: when and how

First look at the entire vectorfield:
is it clearly a stable node, unstable node, saddle?
YES: you are finished!
NO: look at self-feedback

Self-feedback:

- Feedback of x variable on itself
- add a little x (small horizontal step from eq. to the right)
- does x increase or decreases (horizontal vector to left or right)

Self-feedback: when and how

First look at the entire vectorfield:
is it clearly a stable node, unstable node, saddle?
YES: you are finished!
NO: look at self-feedback

Self-feedback:

- Feedback of x variable on itself
- add a little x (small horizontal step from eq. to the right)
- does x increase or decreases (horizontal vector to left or right)
- Feedback of y variable on itself
- add a little y (small vertical step from eq. upwards)
- does y increase or decreases (vertical vector up or down)

Self-feedback: example

predator-prey system:

$$
\left\{\begin{array}{c}
\frac{d x}{d t}=3 x(1-x)-1.5 x y \\
\frac{d y}{d t}=0.5 x y-0.25 y \\
\quad x \text { null-clines: } \\
x=0 \text { and } y=2-2 x \\
y \text { null-clines } \\
y=0 \text { and } x=0.5
\end{array}\right.
$$

Self-feedback: example

predator-prey system:

$$
\left\{\begin{array}{c}
\frac{d x}{d t}=3 x(1-x)-1.5 x y \\
\frac{d y}{d t}=0.5 x y-0.25 y \\
x \text { null-clines: } \\
x=0 \text { and } y=2-2 x \\
y \text { null-clines } \\
y=0 \text { and } x=0.5
\end{array}\right.
$$

x : negative feedback on itself: convergence back to equilibrium

Self-feedback: example

 predator-prey system:$$
\left\{\begin{array}{c}
\frac{d x}{d t}=3 x(1-x)-1.5 x y \\
\frac{d y}{d t}=0.5 x y-0.25 y \\
\quad x \text { null-clines: } \\
x=0 \text { and } y=2-2 x \\
\quad y \text { null-clines } \\
\mathrm{y}=0 \text { and } \mathrm{x}=0.5
\end{array}\right.
$$

x : negative feedback on itself: convergence back to equilibrium
y : zero feedback on itself: no convergence nor divergence

Self-feedback: example

 predator-prey system:$$
\left\{\begin{array}{c}
\frac{d x}{d t}=3 x(1-x)-1.5 x y \\
\frac{d y}{d t}=0.5 x y-0.25 y \\
\quad x \text { null-clines: } \\
x=0 \text { and } y=2-2 x \\
\quad y \text { null-clines } \\
\mathrm{y}=0 \text { and } \mathrm{x}=0.5
\end{array}\right.
$$

x : negative feedback on itself: convergence back to equilibrium
y : zero feedback on itself: no convergence nor divergence
net negative feedback: net convergence back to equilibrium

Self-feedback: example

 predator-prey system:$$
\left\{\begin{array}{c}
\frac{d x}{d t}=3 x(1-x)-1.5 x y \\
\frac{d y}{d t}=0.5 x y-0.25 y \\
\quad x \text { null-clines: } \\
x=0 \text { and } y=2-2 x \\
y \text { null-clines } \\
y=0 \text { and } \mathrm{x}=0.5
\end{array}\right.
$$

x : negative feedback on itself: convergence back to equilibrium
y : zero feedback on itself: no convergence nor divergence
net negative feedback: net convergence back to equilibrium
stable equilibrium! (probably stable spiral)

Self-feedback: summary

Self-feedback and stability:

- Stable
- x and y have negative feedback on themselves
- x has negative and y has zero feedback on itself
- x has zero and y has negative feedback on itself

Self-feedback: summary

Self-feedback and stability:

- Stable
- x and y have negative feedback on themselves
- x has negative and y has zero feedback on itself
- x has zero and y has negative feedback on itself
- Unstable
- x and y have positive feedback on themselves
- x has positive and y has zero feedback on itself
- x has zero and y has positive feedback on itself

Self-feedback: summary

Self-feedback and stability:

- Stable
- x and y have negative feedback on themselves
- x has negative and y has zero feedback on itself
- x has zero and y has negative feedback on itself
- Unstable
- x and y have positive feedback on themselves
- x has positive and y has zero feedback on itself
- x has zero and y has positive feedback on itself
- Undetermined
- x has positive and y has negative feedback on itself
- x has negative and y has positive feedback on itself

Self-feedback: summary

Self-feedback and stability:

- Stable
- x and y have negative feedback on themselves
- x has negative and y has zero feedback on itself
- x has zero and y has negative feedback on itself
- Unstable
- x and y have positive feedback on themselves
- x has positive and y has zero feedback on itself
- x has zero and y has positive feedback on itself
- Undetermined
- x has positive and y has negative feedback on itself
- x has negative and y has positive feedback on itself

Net feedback negative \rightarrow stable equilibrium
Net feedback positive \rightarrow unstable equilibrium

Self-feedback: summary

Self-feedback and stability:

- Stable
- x and y have negative feedback on themselves
- x has negative and y has zero feedback on itself
- x has zero and y has negative feedback on itself
- Unstable
- x and y have positive feedback on themselves
- x has positive and y has zero feedback on itself
- x has zero and y has positive feedback on itself
- Undetermined
- x has positive and y has negative feedback on itself
- x has negative and y has positive feedback on itself

Net feedback negative \rightarrow stable equilibrium
Net feedback positive \rightarrow unstable equilibrium
Note that from self-feedback we can not determine equilibrium type!

An overview of 2D equilibria

An equilibrium is only stable, if all directions converge on it. One or more diverging directions means that the equilibrium is unstable.

An overview of 2D equilibria

An equilibrium is only stable, if all directions converge on it. One or more diverging directions means that the equilibrium is unstable.

- Stable equilibria:
- stable node: two stable directions (sometimes rotation)
- stable spiral: rotation, net negative self-feedback

An overview of 2D equilibria

An equilibrium is only stable, if all directions converge on it. One or more diverging directions means that the equilibrium is unstable.

- Stable equilibria:
- stable node: two stable directions (sometimes rotation)
- stable spiral: rotation, net negative self-feedback
- Unstable equilibria:
- unstable node: two unstable directions (sometimes rotation)
- saddle node: one stable and one unstable direction
- unstable spiral: rotation, net positive self-feedback

An overview of 2D equilibria

An equilibrium is only stable, if all directions converge on it. One or more diverging directions means that the equilibrium is unstable.

- Stable equilibria:
- stable node: two stable directions (sometimes rotation)
- stable spiral: rotation, net negative self-feedback
- Unstable equilibria:
- unstable node: two unstable directions (sometimes rotation)
- saddle node: one stable and one unstable direction
- unstable spiral: rotation, net positive self-feedback
- A center point is neutrally stable:
- rotation, net zero self-feedback
- neither convergence nor divergence

