

Levien van Zon, Theoretical Biology, UU

Introducing The Giant Squid Neuron

Loligo forbesii

A Five-Year Interruption

Bernstein's Membrane Theory (1902)

Electrochemical Equilibrium

Walther Nernst (1864-1941)

Nernst Equilibrium
$\overline{V_{K^{+}}}=\frac{R T}{z_{K} F} \ln \frac{\left[\mathrm{~K}^{+}\right]_{o}}{\left[\mathrm{~K}^{+}\right]_{i}} \approx-80 \mathrm{mV}$

Alan Hodgkin

Andrew Huxley

Loligo forbesii

1939: First Recorded Action Potential (Inside an Axon)

Hodgkin, A. L., \& Huxley, A. F. (1939). Action potentials recorded from inside a nerve fibre. Nature, 144(3651), 710-711.

Back In Time: Julius Bernstein (1839-1917)

Bernstein's Membrane Theory Scrutinised

The Voltage Clamp

Voltage Clamp Results

Voltage Clamp Results vs. Channel Model

$G(V)=n(V)^{4} \times G_{\max }$
$G=n \times n \times n \times n \times G_{\max }$

4 gates need to open before 1 channel is open

Membrane Currents and Voltages

Current $/$ and charge Q :

$$
I=\frac{\mathrm{d} Q}{\mathrm{~d} t}
$$

Capacitance C, storing charge:

$$
\begin{aligned}
Q(t) & =V(t) \times C \\
\frac{\mathrm{~d} Q}{\mathrm{~d} t} & =\frac{\mathrm{d} V}{\mathrm{~d} t} \times C \\
I & =\frac{\mathrm{d} V}{\mathrm{~d} t} \times C \\
\frac{\mathrm{~d} V}{\mathrm{~d} t} & =\frac{1}{C} \times I \\
\frac{\mathrm{~d} V}{\mathrm{~d} t} & =\frac{1}{C} \times G(V) \times V
\end{aligned}
$$

A Simple Model for Channels

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\alpha(1-x)-\beta x
$$

Fraction of open channels: x
Fraction of closed channels: $(1-x)$
Rate at which channels open: α
Rate at which channels close: β
Equilibrium \bar{x} :
Solution $x(t)$:

$$
\begin{aligned}
\alpha(1-x)-\beta x & =0 \\
\alpha-\alpha x-\beta x & =0 \\
-(\alpha+\beta) x & =-\alpha \\
\bar{x} & =\frac{\alpha}{\alpha+\beta}
\end{aligned}
$$

$x(t)=\bar{x}-\left(\bar{x}-x_{0}\right) \mathrm{e}^{-(\alpha+\beta) t}$

A Simple Model for Potassium Gates

$$
\begin{aligned}
& \frac{\mathrm{d} n}{\mathrm{~d} t}=\alpha(V)(1-n)-\beta(V) n \\
& \frac{\mathrm{~d} n}{\mathrm{~d} t}=\frac{1}{\tau_{n}}(\bar{n}-n)
\end{aligned}
$$

Fraction of open K^{+}gates: n

Equilibrium $\bar{n}(V)$ or n_{∞} $\bar{n}(V)=\frac{\alpha(V)}{\alpha(V)+\beta(V)}$

Time constant $\tau(\mathrm{V})$
$\tau_{n}(V)=\frac{1}{\alpha(V)+\beta(V)}$

$$
\begin{array}{ll}
\alpha_{n}(V)=\frac{\bar{n}(V)}{\tau_{n}(V)} & \alpha_{n}(V)=\frac{0.01(10-V)}{\mathrm{e}^{(1-0.1 V)}-1} \\
\beta_{n}(V)=\frac{1-\bar{n}(V)}{\tau_{n}(V)} & \beta_{n}(V)=0.125 \mathrm{e}^{-\frac{V}{80}}
\end{array}
$$

$$
\frac{\mathrm{d} n}{\mathrm{~d} t}=\alpha_{n}(1-n)-\beta_{n} n
$$

Fraction of open K^{+}gates: n

Rate "constants" α and β are not constant, but depend on voltage

$$
\begin{aligned}
& \alpha_{n}(V)=\frac{0.01(10-V)}{\mathrm{e}^{(1-0.1 V)}-1} \\
& \beta_{n}(V)=0.125 \mathrm{e}^{-\frac{V}{80}}
\end{aligned}
$$

A "Simple" Model for Na^{+}Gates

$$
\begin{aligned}
& \frac{\mathrm{d} m}{\mathrm{~d} t}=\alpha_{m}(1-m)-\beta_{m} m \\
& \frac{\mathrm{~d} h}{\mathrm{~d} t}=\alpha_{h}(1-h)-\beta_{h} h
\end{aligned}
$$

Rate "constants" α and β are not constant, but depend on voltage

$$
\begin{aligned}
\alpha_{m} & =0.1 \frac{25-V}{\mathrm{e}^{\frac{25-V}{10}}-1} \\
\beta_{m} & =4 \mathrm{e}^{\left(-\frac{v}{18}\right)} \\
\alpha_{h} & =0.07 \mathrm{e}^{\left(-\frac{v}{20}\right)} \\
\beta_{h} & =\frac{1}{\mathrm{e}^{\left(\frac{30-v}{10}\right)}+1}
\end{aligned}
$$

Membrane Currents and Voltages Revisited

Describing the voltage:

$$
\begin{aligned}
\frac{\mathrm{d} V}{\mathrm{~d} t} & =\frac{1}{C} \times G \times V \\
& =\frac{1}{C} \times\left(I_{K^{+}}+I_{\mathrm{Na}^{+}}+I_{R}\right) \\
& =\frac{1}{C} \times\left(G_{K^{+}} \times\left(\overline{V_{K^{+}}}-V\right)+G_{\mathrm{Na}^{+}} \times\left(\overline{V_{\mathrm{Na}^{+}}}-V\right)+G_{R} \times\left(\overline{V_{R}}-V\right)\right)
\end{aligned}
$$

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1}{C} \times\left(G_{K^{+}} \times\left(\overline{\bar{V}_{K^{+}}}-V\right)+G_{\mathrm{Na}^{+}} \times\left(\overline{V_{\mathrm{Na}^{+}}}-V\right)+G_{R} \times\left(\overline{V_{R}}-V\right)\right)
$$

Please Wait, Calculating..

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1}{C}\left(G_{K}\left(\overline{V_{K}}-V\right)+G_{N a}\left(\overline{V_{N a}}-V\right)+G_{R}\left(\overline{V_{R}}-V\right)\right) \\
\frac{\mathrm{d} m}{\mathrm{~d} t}=\alpha_{m}(1-m)-\beta_{m} m \\
\frac{\mathrm{~d} h}{\mathrm{~d} t}=\alpha_{h}(1-h)-\beta_{h} h \\
\frac{\mathrm{~d} n}{\mathrm{~d} t}=\alpha_{n}(1-n)-\beta_{n} n
\end{array}\right.
$$

with

$$
G_{K}=n^{4} G_{K \text { max }}
$$

$$
G_{N a}=m^{3} h G_{N a \max }
$$

$$
\begin{aligned}
\alpha_{n} & =\frac{0.01(10-V)}{\mathrm{e}^{(1-0.1 V)}-1} \\
\beta_{n} & =0.125 \mathrm{e}^{-\frac{v}{80}} \\
\alpha_{m} & =0.1 \frac{25-V}{\mathrm{e}^{\frac{25-V}{10}}-1} \\
\beta_{m} & =4 \mathrm{e}^{\left(-\frac{V}{18}\right)} \\
\alpha_{h} & =0.07 \mathrm{e}^{\left(-\frac{v}{20}\right)}
\end{aligned}
$$

But, how to test all this?

Brunsviga 20 - "Brains of Steel'

2003: Prediction Confirmed!

Simplifying the model

Quasi Steady State assumption
The m gate is much faster
so replace m by its steady-state \bar{m} :

$$
m=\bar{m}=\frac{\alpha_{m}}{\alpha_{m}+\beta_{m}}
$$

Conservation assumption
n and h are almost complementary: $n+h \simeq 0.91$ Use this to remove n :

$$
n=0.91-h
$$

This reduces the model to 2 variables: V and h !

Simplified, But Still Pretty Complicated!

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1}{C}\left(G_{K}\left(\overline{V_{K}}-V\right)+G_{N a}\left(\overline{V_{N a}}-V\right)+G_{R}\left(\overline{V_{R}}-V\right)\right) \\
\underline{\mathrm{d} h}+
\end{array}\right.
$$

with

$$
G_{K}=(0.91-h)^{4} G_{K \max }
$$

$$
G_{N a}=\bar{m}^{3} h G_{N a \max }
$$

$$
\bar{m}=\frac{\alpha_{m}}{\alpha_{m}+\beta_{m}}
$$

$$
\begin{aligned}
& \alpha_{n}=\frac{0.01(10-V)}{\mathrm{e}^{(1-0.1 V)}-1} \\
& \beta_{n}=0.125 \mathrm{e}^{-\frac{v}{80}} \\
& \alpha_{m}=0.1 \frac{25-V}{\mathrm{e}^{\frac{25-v}{10}}-1} \\
& \beta_{m}=4 \mathrm{e}^{\left(-\frac{V}{18}\right)} \\
& \alpha_{h}=0.07 \mathrm{e}^{\left(-\frac{v}{20}\right)} \\
& \beta_{h}=\frac{1}{\mathrm{e}^{\left(\frac{30-v}{10}\right)}+1}
\end{aligned}
$$

Can't we do this simpler?

2014: Running it in GRIND

Action potential: voltage dynamics
b Gate dynamics: m and h for Na^{+}, n for K^{+}

Note that in the original model, rest potential is 0 mV and AP is -90 mV

Nullclines and Phase space

heavy line: V nullcline

- Stable equilibrium
- V nullcline determines activation threshold
- Action potential is an excursion through phase space
- The Na^{+}inactivation gate is slow, closing the h-gates takes time
- Recovery of the h-gates also takes time, causing refractory period
- The voltage V changes much faster than the h-gates

Yes We Can: The FitzHugh-Nagumo Model

$\left\{\begin{array}{l}\frac{d V}{d t}=-V(V-a)(V-1)-W \\ \frac{d V}{d t}=\epsilon(V-b W)\end{array}\right.$

- Not mechanistic, but a phenomenological model
- V is voltage, W causes inactivation, refractoriness
- ϵ is small, so W is a slow variable that follows V
- The $\frac{\mathrm{d} W}{\mathrm{~d} t}=0$ nullcline is a straight line: $W=\frac{1}{b} V$
- The $\frac{\mathrm{d} V}{\mathrm{~d} t}=0$ nullcline is a cubic function: $W=-V(V-a)(V-1)$
- The V-nullcline intersects the V-axis at: $V=0, V=a$ and $V=1$

- Similar to the simplified HH model (but V and W axis mirrored)
- Stable equilibrium
- $V=a$ is the activation threshold
- Action potential is an excursion through phase space
- The inactivation "gate" W is slow, inactivation takes time (right)
- Recovery of W also takes time (left), causing refractory period
- The voltage V changes much faster than the variable W

Summary

Hodgkin-Huxley model

- Key insight: different currents through separate channels.
- Approach: measure and model them separately, then combine
- Ugly equations are just to fit data precisely.
- Key is opening and closing of gates that control open state of channels.
- Different currents and gates control different phases of the action potential:
- depolarization (Na^{+}, m-gate)
- repolarization (Ka^{+}, n-gate)
- refractoriness (Na^{+}, h-gate)
- Model can be simplified from 4 to 2 equations
- The model predicted voltage sensitive, time dependent transmembrane protein channels, long before they were found!

Behavior of V resembles an action potential.
http://www.scholarpedia.org/article/FitzHugh-Nagumo_model

Summary

Fitzhugh-Nagumo model

- Reaching a simpler 2 variable model with similar behaviour, by considering which ingredients are necessary.
- Below the threshold a no real excitation occurs.
- Beyond the threshold a excitation must occur.
- After excitation refractoriness must occur.
- Slow W-variable represses fast V-variable, and ensures refractoriness

