Systems Biology: Theoretical Biology

Levien van Zon, Theoretical Biology, UU

The Neuron Mystery

Alan Hodgkin

Andrew Huxley

Loligo forbesii

Introducing The Giant Squid Neuron

A Five-Year Interruption

1939: First Recorded Action Potential (Inside an Axon)

Hodgkin, A. L., & Huxley, A. F. (1939). Action potentials recorded from inside a nerve fibre. Nature, 144(3651), 710-711.

Back In Time: Julius Bernstein (1839-1917)

Bernstein's Membrane Theory (1902)

Walther Nernst (1864-1941)

Electrochemical Equilibrium

Nernst Equilibrium: $\overline{V_{K^+}} = \frac{RT}{z_K F} \ln \frac{[K^+]_o}{[K^+]_i} \approx -80 \, \text{mV}$

Bernstein's Membrane Theory Scrutinised

The Role Of Sodium?

The Voltage Clamp

Voltage Clamp Results

Voltage Clamp Results vs. Channel Model

Hodgkin & Huxley's Theory

Membrane Currents and Voltages

Current / and charge Q:

$$I = \frac{dQ}{dt}$$

Ohm's Law, resistance *R* and conductance *G*:

$$V = I \times R$$

$$I = \frac{1}{R} \times V$$

$$I = G \times V$$

Capacitance C, storing charge:

$$Q(t) = V(t) \times C$$

$$\frac{dQ}{dt} = \frac{dV}{dt} \times C$$

$$I = \frac{dV}{dt} \times C$$

$$\frac{dV}{dt} = \frac{1}{C} \times I$$

$$\frac{dV}{dt} = \frac{1}{C} \times G(V) \times V$$

A Simple Model for Channels

$$\frac{\mathsf{d}x}{\mathsf{d}t} = \alpha(1-x) - \beta x$$

Fraction of open channels: x Fraction of closed channels: (1-x) Rate at which channels open: α Rate at which channels close: β

Equilibrium \overline{x} :

Solution x(t):

$$\alpha(1-x) - \beta x = 0$$

$$\alpha - \alpha x - \beta x = 0$$

$$-(\alpha + \beta)x = -\alpha$$

$$\overline{x} = \frac{\alpha}{\alpha + \beta}$$

$$x(t) = \overline{x} - (\overline{x} - x_0)e^{-(\alpha + \beta)t}$$

A Simple Model for Potassium Gates

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha(V)(1-n) - \beta(V)n$$

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \frac{1}{\tau_n}(\overline{n}-n)$$

Fraction of open K^+ gates: n

Equilibrium $\overline{n}(V)$ or n_{∞} : $\overline{n}(V) = \frac{\alpha(V)}{\alpha(V) + \beta(V)}$

Time constant $\tau(V)$: $\tau_n(V) = \frac{1}{\alpha(V) + \beta(V)}$

Finding $\overline{\mathbf{n}}$, τ , α and β

$$\alpha_n(V) = \frac{\overline{n}(V)}{\tau_n(V)}$$
$$\beta_n(V) = \frac{1 - \overline{n}(V)}{\tau_n(V)}$$

$$\alpha_n(V) = \frac{0.01(10 - V)}{e^{(1 - 0.1V)} - 1}$$

$$\beta_n(V) = 0.125e^{-\frac{V}{80}}$$

A Simple Model for Sodium Gates

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_m (1 - m) - \beta_m m$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \alpha_h (1 - h) - \beta_h h$$

Two types of Na⁺ gates:

- 1 m-gates open rapidly in response to voltage
- h-gates close slowly in response to voltage

m and h are the fractions of m-gates and h-gates that are open.

What Were We Modelling Again?

Nernst Equilibria: $\frac{\overline{V_{K^+}}}{V_{Na^+}} \approx -80 \,\mathrm{mV}$ $\approx +50 \,\mathrm{mV}$

The Full Model

$$\begin{cases} \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{\overline{C}} \left(G_K(\overline{V_K} - V) + G_{Na}(\overline{V_{Na}} - V) + G_R(\overline{V_R} - V) \right) \\ \frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_m (1 - m) - \beta_m m \\ \frac{\mathrm{d}h}{\mathrm{d}t} = \alpha_h (1 - h) - \beta_h h \\ \frac{\mathrm{d}n}{\mathrm{d}t} = \alpha_n (1 - n) - \beta_n n \end{cases}$$

with

$$G_K = n^4 G_{K max}$$

 $G_{Na} = m^3 h G_{Na max}$

$$G_K = n^4 G_{K_{max}}$$

 $G_{Na} = m^3 h G_{Na_{max}}$

$$\begin{split} \alpha_m &= 0.1 \frac{25 - V}{\mathrm{e}^{\frac{25 - V}{10^V}} - 1} \\ \beta_m &= 4\mathrm{e}^{(-\frac{V}{18})} \\ \alpha_h &= 0.07\mathrm{e}^{(-\frac{V}{20})} \\ \beta_h &= \frac{1}{\mathrm{e}^{(\frac{30 - V}{10^V})} + 1} \end{split}$$

 $\alpha_n = \frac{0.01(10 - V)}{e^{(1 - 0.1V)} - 1}$

 $\beta_{\it n}=0.125 {\rm e}^{-\frac{\it V}{80}}$

A "Simple" Model for Potassium Gates

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha_n(1-n) - \beta_n n$$

Fraction of open K^+ gates: n

Rate "constants" α and β are not constant, but depend on voltage:

$$\alpha_n(V) = \frac{0.01(10 - V)}{e^{(1 - 0.1V)} - 1}$$
$$\beta_n(V) = 0.125e^{-\frac{V}{80}}$$

A "Simple" Model for Na⁺ Gates

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_m (1 - m) - \beta_m m$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \alpha_h (1 - h) - \beta_h h$$

Rate "constants" α and β are not constant, but depend on voltage:

$$\begin{aligned} \alpha_m &= 0.1 \frac{25 - V}{\mathrm{e}^{\frac{25 - V}{10}} - 1} \\ \beta_m &= 4\mathrm{e}^{(-\frac{V}{18})} \\ \alpha_h &= 0.07\mathrm{e}^{(-\frac{V}{20})} \\ \beta_h &= \frac{1}{\mathrm{e}^{(\frac{30 - V}{10})} + 1} \end{aligned}$$

Membrane Currents and Voltages Revisited

Describing the voltage:

$$\begin{split} \frac{\mathrm{d}V}{\mathrm{d}t} &= \frac{1}{C} \times G \times V \\ &= \frac{1}{C} \times (I_{K^{+}} + I_{Na^{+}} + I_{R}) \\ &= \frac{1}{C} \times (G_{K^{+}} \times (\overline{V_{K^{+}}} - V) + G_{Na^{+}} \times (\overline{V_{Na^{+}}} - V) + G_{R} \times (\overline{V_{R}} - V)) \end{split}$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{C} \times \left(G_{K^{+}} \times \left(\overline{V_{K^{+}}} - V\right) + G_{Na^{+}} \times \left(\overline{V_{Na^{+}}} - V\right) + G_{R} \times \left(\overline{V_{R}} - V\right)\right)$$

Please Wait, Calculating...

Brunsviga 20 — "Brains of Steel"

Please Wait, Calculating...

2003: Prediction Confirmed!

Simplifying the model

Quasi Steady State assumption

The m gate is much faster, so replace m by its steady-state \overline{m} :

$$m = \overline{m} = \frac{\alpha_m}{\alpha_m + \beta_m}$$

Conservation assumption

 \emph{n} and \emph{h} are almost complementary: $\emph{n}+\emph{h}\simeq 0.91$ Use this to remove $\emph{n}:$

$$n = 0.91 - h$$

 $\beta_{\mathit{h}} = \frac{1}{\mathrm{e}^{\left(\frac{30-V}{10}\right)} + 1}$

This reduces the model to 2 variables: V and h!

Simplified, But Still Pretty Complicated!

$$\left\{ \begin{array}{l} \frac{dV}{dt} = \frac{1}{C}(G_K(\overline{V_K} - V) + G_{Na}(\overline{V_{Na}} - V) + G_R(\overline{V_R} - V)) \\ \frac{dh}{dt} = \alpha_h(1 - h) - \beta_h h \end{array} \right.$$

with

$$\alpha_{n} = \frac{0.01(10 - V)}{e^{(1 - 0.1V)} - 1}$$

$$G_{K} = (0.91 - h)^{4} G_{K_{max}}$$

$$G_{Na} = \overline{m}^{3} h G_{Na_{max}}$$

$$\overline{m} = \frac{\alpha_{m}}{\alpha_{m} + \beta_{m}}$$

$$\alpha_{m} = 0.1 \frac{25 - V}{e^{\frac{25 - V}{20}} - 1}$$

$$\beta_{m} = 4e^{(-\frac{V}{18})}$$

$$\alpha_{h} = 0.07e^{(-\frac{V}{20})}$$

Can't we do this simpler?

1963: Nobel Prize!

2014: Running it in GRIND

a Action potential: voltage dynamics

b Gate dynamics: m and h for Na⁺, n for K⁺

Note that in the original model, rest potential is 0 mV and AP is -90 mV

Nullclines and Phase space

thin line: h nullcline heavy line: V nullcline

- Stable equilibrium
- V nullcline determines activation threshold
- Action potential is an excursion through phase space
- $\bullet\,$ The Na $^+$ inactivation gate is slow, closing the $\emph{h}\textsc{-}\mathrm{gates}$ takes time
- \bullet Recovery of the $\emph{h}\text{-}\textsc{gates}$ also takes time, causing refractory period
- The voltage V changes much faster than the h-gates

Yes We Can: The FitzHugh-Nagumo Model

$$\begin{cases} \frac{\mathrm{d}V}{\mathrm{d}t} = -V(V-a)(V-1) - W \\ \frac{\mathrm{d}W}{\mathrm{d}t} = \epsilon(V-bW) \end{cases}$$

- Not mechanistic, but a phenomenological model
- V is voltage, W causes inactivation, refractoriness
- ullet is small, so W is a slow variable that follows V
- The $\frac{\mathrm{d}W}{\mathrm{d}t}=0$ nullcline is a straight line: $W=\frac{1}{b}V$
- The $\frac{\mathrm{d}V}{\mathrm{d}t}=0$ nullcline is a cubic function: W=-V(V-a)(V-1)
- The V-nullcline intersects the V-axis at: $V=0,\ V=a$ and V=1

FitzHugh-Nagumo: What Does It Look Like?

- Similar to the simplified HH model (but V and W axis mirrored)
- Stable equilibrium
- ullet V=a is the activation threshold
- Action potential is an excursion through phase space
- ullet The inactivation "gate" W is slow, inactivation takes time (right)
- ullet Recovery of W also takes time (left), causing refractory period
- ullet The voltage V changes much faster than the variable W

Summary

Hodgkin-Huxley model

- Key insight: different currents through separate channels.
- Approach: measure and model them separately, then combine.
- Ugly equations are just to fit data precisely.
- Key is opening and closing of gates that control open state of
- Different currents and gates control different phases of the action potential:
 - depolarization (Na⁺, m-gate)
 - repolarization (Ka⁺, n-gate)
 refractoriness (Na⁺, h-gate)
- Model can be simplified from 4 to 2 equations
- The model predicted voltage sensitive, time dependent transmembrane protein channels, long before they were found!

FitzHugh-Nagumo: Behavior in time

Behavior of V resembles an action potential.

http://www.scholarpedia.org/article/FitzHugh-Nagumo model

Summary

Fitzhugh-Nagumo model

- Reaching a simpler 2 variable model with similar behaviour, by considering which ingredients are necessary.
- Below the threshold a no real excitation occurs.
- Beyond the threshold a excitation must occur.
- After excitation refractoriness must occur.
- ullet Slow $W ext{-variable}$ represses fast $V ext{-variable}$, and ensures refractoriness