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1939: First Recorded Action Potential (Inside an Axon)

Hodgkin, A. L., & Huxley, A. F. (1939). Action potentials recorded from inside
a nerve fibre. Nature, 144(3651), 710-711.
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Back In Time: Julius Bernstein (1839-1917)
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Bernstein's Membrane Theory (1902)

Walther Nernst
(1864-1941)
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Bernstein's Membrane Theory Scrutinised
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The Role Of Sodium?

Electrochemical Equilibrium
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The Role Of Sodium?

Electrochemical Equilibrium

Nernst Equilibria:
VK+ ~ —80mV
Vst = +50mV




Hodgkin & Huxley's Theory
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The Voltage Clamp

When Vi is different from the command
potential the clamp amplifier injects current
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Membrane Currents and Voltages
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Membrane Currents and Voltages
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Voltage Clamp Results
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A Simple Model for Channels

dx
E:a(lfx)fﬁx

Fraction of open channels: x
Fraction of closed channels: (1 — x)
Rate at which channels open: «
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A Simple Model for Channels
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Voltage Clamp Results vs. Channel Model
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Voltage Clamp Results vs. Channel Model
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Voltage Clamp Results vs. Channel Model
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A Simple Model for Potassium Gates
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A Simple Model for Potassium Gates

dn
dt

Fraction of open KT gates: n

Equilibrium A(V) :
"=t

Time constant 7:

T™n = o4p

a(l—n)—fn

fraction of gates open

0.9
0.8
0.7
0.6
0.5
04
03
0.2
0.1

n

n(t)
(1)




A Simple Model for Potassium Gates

dn
dt

Fraction of open KT gates: n

Equilibrium A(V) :

= _
n_a+ﬂ

Time constant 7(V):

_ 1
(V) = svysm

a(l—n)—fn

fraction of gates open

0.9
0.8
0.7
0.6
0.5
04
03
0.2
0.1

n

n(t)
(1)




A Simple Model for Potassium Gates

dn
dt

Fraction of open KT gates: n

Equilibrium A(V) :

= _
n_oH-B

Time constant 7(V):

a(l—n)—fn

fraction of gates open

0.9
0.8
0.7
0.6
0.5
04
03
0.2
0.1

n

n(t)
(1)




A Simple Model for Potassium Gates

dl
dt

Fraction of open KT gates: n

Equilibrium A(V) :

= _
n_oH-B

Time constant 7(V):

a(l—n)—fn
Z@-n)

fraction of gates open

0.9
0.8
0.7
0.6
0.5
04
03
0.2
0.1

n

n(t)
(1)




A Simple Model for Potassium Gates
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A “Simple” Model for Potassium Gates
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Fraction of open KT gates: n
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A Simple Model for Sodium Gates
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m and h are the fractions of m-gates and h-gates that are open.



A Simple Model for Sodium Gates
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A Simple Model for Sodium Gates
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Two types of Na™ gates:

@ m-gates open rapidly in response to voltage

@ h-gates close slowly in response to voltage

m and h are the fractions of m-gates and h-gates that are open.



A Simple Model for Sodium Gates
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A Simple Model for Sodium Gates
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A “Simple” Model for Na* Gates

ciir: =an(l—m)—Bmm
dh
E Iah(].*h)fﬂhh

Rate “constants” « and 3 are not constant, but depend on voltage:
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What Were We Modelling Again?

Electrochemical Equilibrium
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Lipid
bilayer

Channel

Describing the voltage:

dVv 1
— = x GxV
dt

X (/K+ + INa* + /R)

A= 0l ol

X (GK+ X (V7K+— V)+GN3+ X (VNa+ - V)-‘r-GR X (VR— V))
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Membrane Currents and Voltages Revisited

Lipid
bilayer
\ Rk *
Cm Vi
Ek — *

Channel

Describing the voltage:

dv 1

dr —EX(GK+ X(W_V)+GN3+ X(VN3+—V)+GRX(VR—V))

with

GK+ = n4 X GKmax

GN3+ = m3 X h X GNamax



The Full Model

g
C
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(
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with

4
GK =n GKmax

3
Gn, = m hGNamaX
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The Full Model

dv _ 1
g~ <l
g —om
g — ol
gt = an(

with

4
GK =n GKmax

3
GNa =m hGNamax

But, how to test all this?

~ 0.01(10 - V)
¥ = 1-01v) _ 1

B, = 0.125¢~ %

25—V
am = Olﬁ
e —1
Bm = 46(_%)
ap = 0.07¢(~ =)
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Brunsviga 20 — “Brains of Steel”



Please Wait, Calculating...

100 100
s A s 8
€ 50 £
‘T’ T 50
0 1 2msec
oL 4 1 1 0l
0 5 10 msec
110
100 mv c _100 D
s > 80
B £
<50 350
! 0 1 2 msec
oL L 1 0
0
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1963: Nobel Prize!

R‘km«mﬁ.{bﬂnﬁhdilﬂn\-&y ! et
experimenting with the nerve fibers of squids and lobsters.



2003: Prediction Confirmed!




2014: Running it in GRIND

~120 (2)
>
—50
200 '
time (ms)

a Action potential: voltage dynamics
b Gate dynamics: m and h for Na*t, n for Kt

Note that in the original model, rest potential is 0 mV and AP is -90 mV
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Simplifying the model

Quasi Steady State assumption

The m gate is much faster,
so replace m by its steady-state m:

Conservation assumption

n and h are almost complementary: n+ h ~ 0.91
Use this to remove n:

n=091—-h

This reduces the model to 2 variables: V' and hl!
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6.5

—0.45 ~50 20 —120 50 20

thin line: h nullcline
heavy line: V nullcline

Stable equilibrium

@ V nullcline determines activation threshold

Action potential is an excursion through phase space

@ The Na™ inactivation gate is slow, closing the h-gates takes time

Recovery of the h-gates also takes time, causing refractory period

(]

The voltage V' changes much faster than the h-gates
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Simplified, But Still Pretty Complicated!

{ aT = 2(Gk(Vik = V) + Gna(Via — V) + Gr(VR — V)
dt —

an(l—h) — Bph
with
_ 0.01(10 — V)
"= o) —1
_v
Gk =(0.91 — h)4GKmax B, =0.125¢™ &
GNa = ﬁ3hGNamaX am = 013557‘/;\/
Qm e —1
e m Bm = 4o~ 18)
ap = 0.07e(~2)
1
Can't we do this simpler? Bn =
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Yes We Can: The FitzHugh-Nagumo Model

Y =_—V(V-a)(V-1)-W
WV — (V- bW)

t

Not mechanistic, but a phenomenological model
V is voltage, W causes inactivation, refractoriness
€ is small, so W is a slow variable that follows V
The %—Vtv = 0 nullcline is a straight line: W = %V

The % = 0 nullcline is a cubic function:

W=-V((V-a(V-1)
The V-nullcline intersects the V-axis at:
V=0,V=aand V=1
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FitzHugh-Nagumo: What Does It Look Like?

(a) (b)
= . <
0
0 v Vv

Similar to the simplified HH model (but V and W axis mirrored)
Stable equilibrium

V = a is the activation threshold

Action potential is an excursion through phase space

The inactivation “gate” W is slow, inactivation takes time (right)

Recovery of W also takes time (left), causing refractory period

The voltage V changes much faster than the variable W



FitzHugh-Nagumo: Behavior in time

Behavior of V' resembles an action potential.

http:/ /www.scholarpedia.org/article /FitzHugh-Nagumo_model


http://www.scholarpedia.org/article/FitzHugh-Nagumo_model
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Summary

Hodgkin-Huxley model

Key insight: different currents through separate channels.
Approach: measure and model them separately, then combine.
Ugly equations are just to fit data precisely.

Key is opening and closing of gates that control open state of
channels.

Different currents and gates control different phases of the action
potential:

o depolarization (Nat, m-gate)

o repolarization (Ka™, n-gate)

o refractoriness (Na™, h-gate)
Model can be simplified from 4 to 2 equations

The model predicted voltage sensitive, time dependent
transmembrane protein channels, long before they were found!
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Summary

Fitzhugh-Nagumo model

@ Reaching a simpler 2 variable model with similar behaviour, by
considering which ingredients are necessary.

@ Below the threshold a no real excitation occurs.
@ Beyond the threshold a excitation must occur.
@ After excitation refractoriness must occur.

@ Slow W-variable represses fast V-variable, and ensures refractoriness
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