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1939: First Recorded Action Potential (Inside an Axon)

Hodgkin, A. L., & Huxley, A. F. (1939). Action potentials recorded from inside
a nerve fibre. Nature, 144(3651), 710-711.

http://www.nature.com/nature/journal/v144/n3651/abs/144710a0.html
http://www.nature.com/nature/journal/v144/n3651/abs/144710a0.html


A Five-Year Interruption



Back In Time: Julius Bernstein (1839-1917)



Bernstein’s Membrane Theory (1902)

Walther Nernst
(1864-1941) Nernst Equilibrium:

VK+ = RT
zK F ln [K+]o

[K+]i
≈ −80mV



Bernstein’s Membrane Theory Scrutinised
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Hodgkin & Huxley’s Theory
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The Voltage Clamp



Membrane Currents and Voltages

Current I and charge Q:

I = dQ
dt

Ohm’s Law, resistance R and
conductance G:

V = I × R

I = 1
R × V
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Capacitance C , storing charge:

Q(t) = V (t)× C

dQ
dt = dV
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A Simple Model for Channels

dx
dt = α(1− x)− βx

Fraction of open channels: x

Fraction of closed channels: (1− x)
Rate at which channels open: α
Rate at which channels close: β

Equilibrium x :

α(1− x)− βx = 0
α− αx − βx = 0
− (α+ β)x = −α

x =
α

α+ β

Solution x(t):

x(t) = x − (x − x0)e−(α+β)t
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Voltage Clamp Results vs. Channel Model
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τn
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n = α
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Time constant τ :
τn = 1

α+β
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Finding n, τ , α and β

αn(V ) =
n(V )

τn(V )

βn(V ) =
1− n(V )

τn(V )

αn(V ) =
0.01(10− V )

e(1−0.1V ) − 1
βn(V ) = 0.125e− V
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A “Simple” Model for Potassium Gates

dn
dt = αn(1− n)− βnn

Fraction of open K+ gates: n

Rate “constants” α and β are not constant, but depend on voltage:

αn(V ) =
0.01(10− V )

e(1−0.1V ) − 1
βn(V ) = 0.125e− V

80



A Simple Model for Sodium Gates

dm
dt = αm(1−m)− βmm

dh
dt = αh(1− h)− βhh

Two types of Na+ gates:

1 m-gates open rapidly in response to voltage
2 h-gates close slowly in response to voltage

m and h are the fractions of m-gates and h-gates that are open.
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A “Simple” Model for Na+ Gates

dm
dt = αm(1−m)− βmm

dh
dt = αh(1− h)− βhh

Rate “constants” α and β are not constant, but depend on voltage:

αm = 0.1 25− V
e 25−V

10 − 1
βm = 4e(− V

18 )

αh = 0.07e(− V
20 )

βh =
1

e( 30−V
10 ) + 1



What Were We Modelling Again?

Nernst Equilibria:
VK+ ≈ −80mV
VNa+ ≈ +50mV



Membrane Currents and Voltages Revisited

Describing the voltage:

dV
dt =

1
C × G × V

=
1
C × (IK+ + INa+ + IR)

=
1
C × (GK+ × (VK+ − V ) + GNa+ × (VNa+ − V ) + GR × (VR − V ))
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The Full Model


dV
dt = 1

C (GK (VK − V ) + GNa(VNa − V ) + GR(VR − V ))
dm
dt = αm(1−m)− βmm
dh
dt = αh(1− h)− βhh
dn
dt = αn(1− n)− βnn

with

GK = n4GK max

GNa = m3hGNamax

But, how to test all this?

αn =
0.01(10− V )

e(1−0.1V ) − 1
βn = 0.125e− V

80

αm = 0.1 25− V
e 25−V

10 − 1
βm = 4e(− V

18 )

αh = 0.07e(− V
20 )

βh =
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e( 30−V
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Please Wait, Calculating...

Brunsviga 20 — “Brains of Steel”



Please Wait, Calculating...



1963: Nobel Prize!



2003: Prediction Confirmed!



2014: Running it in GRIND

t

0 2 4 6 8

20

-50

-120

V

(a)

time (ms)

V

0 4 820

−50

−120

t

0 2 4 6 8

0

0.5

1

m

hn

(b)

time (ms)
0 4 80

0.5

1

n
h

m

a Action potential: voltage dynamics
b Gate dynamics: m and h for Na+, n for K+

Note that in the original model, rest potential is 0mV and AP is -90mV



Simplifying the model

Quasi Steady State assumption
The m gate is much faster,
so replace m by its steady-state m:

m = m =
αm

αm + βm

Conservation assumption
n and h are almost complementary: n + h ' 0.91
Use this to remove n:

n = 0.91− h

t

0 2 4 6 8

0

0.5
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m

hn

time (ms)0 4 80

0.5

1

n
h

m

This reduces the model to 2 variables: V and h!
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Nullclines and Phase space
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heavy line: V nullcline

Stable equilibrium

V nullcline determines activation threshold

Action potential is an excursion through phase space

The Na+ inactivation gate is slow, closing the h-gates takes time

Recovery of the h-gates also takes time, causing refractory period

The voltage V changes much faster than the h-gates
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Simplified, But Still Pretty Complicated!

{ dV
dt = 1

C (GK (VK − V ) + GNa(VNa − V ) + GR(VR − V ))
dh
dt = αh(1− h)− βhh

with

GK = (0.91− h)4GK max

GNa = m3hGNamax

m =
αm

αm + βm

Can’t we do this simpler?

αn =
0.01(10− V )

e(1−0.1V ) − 1
βn = 0.125e− V

80

αm = 0.1 25− V
e 25−V

10 − 1
βm = 4e(− V

18 )

αh = 0.07e(− V
20 )

βh =
1

e( 30−V
10 ) + 1
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Yes We Can: The FitzHugh-Nagumo Model

{
dV
dt = −V (V − a)(V − 1)−W
dW
dt = ε(V − bW )

Not mechanistic, but a phenomenological model
V is voltage, W causes inactivation, refractoriness
ε is small, so W is a slow variable that follows V
The dW

dt = 0 nullcline is a straight line: W = 1
b V

The dV
dt = 0 nullcline is a cubic function:

W = −V (V − a)(V − 1)
The V -nullcline intersects the V -axis at:
V = 0, V = a and V = 1
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FitzHugh-Nagumo: What Does It Look Like?
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Similar to the simplified HH model (but V and W axis mirrored)
Stable equilibrium
V = a is the activation threshold
Action potential is an excursion through phase space
The inactivation “gate” W is slow, inactivation takes time (right)
Recovery of W also takes time (left), causing refractory period
The voltage V changes much faster than the variable W



FitzHugh-Nagumo: What Does It Look Like?

W

V

(a)

V

W
0

0

W

V

(b)

V

W

Similar to the simplified HH model (but V and W axis mirrored)

Stable equilibrium
V = a is the activation threshold
Action potential is an excursion through phase space
The inactivation “gate” W is slow, inactivation takes time (right)
Recovery of W also takes time (left), causing refractory period
The voltage V changes much faster than the variable W



FitzHugh-Nagumo: What Does It Look Like?

W

V

(a)

V

W
0

0

W

V

(b)

V

W

Similar to the simplified HH model (but V and W axis mirrored)
Stable equilibrium

V = a is the activation threshold
Action potential is an excursion through phase space
The inactivation “gate” W is slow, inactivation takes time (right)
Recovery of W also takes time (left), causing refractory period
The voltage V changes much faster than the variable W



FitzHugh-Nagumo: What Does It Look Like?

W

V

(a)

V

W
0

0

W

V

(b)

V

W

Similar to the simplified HH model (but V and W axis mirrored)
Stable equilibrium
V = a is the activation threshold

Action potential is an excursion through phase space
The inactivation “gate” W is slow, inactivation takes time (right)
Recovery of W also takes time (left), causing refractory period
The voltage V changes much faster than the variable W



FitzHugh-Nagumo: What Does It Look Like?

W

V

(a)

V

W
0

0

W

V

(b)

V

W

Similar to the simplified HH model (but V and W axis mirrored)
Stable equilibrium
V = a is the activation threshold
Action potential is an excursion through phase space

The inactivation “gate” W is slow, inactivation takes time (right)
Recovery of W also takes time (left), causing refractory period
The voltage V changes much faster than the variable W



FitzHugh-Nagumo: What Does It Look Like?

W

V

(a)

V

W
0

0

W

V

(b)

V

W

Similar to the simplified HH model (but V and W axis mirrored)
Stable equilibrium
V = a is the activation threshold
Action potential is an excursion through phase space
The inactivation “gate” W is slow, inactivation takes time (right)

Recovery of W also takes time (left), causing refractory period
The voltage V changes much faster than the variable W



FitzHugh-Nagumo: What Does It Look Like?

W

V

(a)

V

W
0

0

W

V

(b)

V

W

Similar to the simplified HH model (but V and W axis mirrored)
Stable equilibrium
V = a is the activation threshold
Action potential is an excursion through phase space
The inactivation “gate” W is slow, inactivation takes time (right)
Recovery of W also takes time (left), causing refractory period

The voltage V changes much faster than the variable W



FitzHugh-Nagumo: What Does It Look Like?

W

V

(a)

V

W
0

0

W

V

(b)

V

W

Similar to the simplified HH model (but V and W axis mirrored)
Stable equilibrium
V = a is the activation threshold
Action potential is an excursion through phase space
The inactivation “gate” W is slow, inactivation takes time (right)
Recovery of W also takes time (left), causing refractory period
The voltage V changes much faster than the variable W



FitzHugh-Nagumo: Behavior in time
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Behavior of V resembles an action potential.

http://www.scholarpedia.org/article/FitzHugh-Nagumo_model

http://www.scholarpedia.org/article/FitzHugh-Nagumo_model


Summary
Hodgkin-Huxley model

Key insight: different currents through separate channels.

Approach: measure and model them separately, then combine.

Ugly equations are just to fit data precisely.

Key is opening and closing of gates that control open state of
channels.

Different currents and gates control different phases of the action
potential:

depolarization (Na+, m-gate)
repolarization (Ka+, n-gate)
refractoriness (Na+, h-gate)

Model can be simplified from 4 to 2 equations

The model predicted voltage sensitive, time dependent
transmembrane protein channels, long before they were found!
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transmembrane protein channels, long before they were found!
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Summary

Fitzhugh-Nagumo model

Reaching a simpler 2 variable model with similar behaviour, by
considering which ingredients are necessary.

Below the threshold a no real excitation occurs.

Beyond the threshold a excitation must occur.

After excitation refractoriness must occur.

Slow W -variable represses fast V -variable, and ensures refractoriness
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