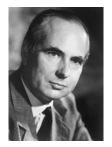
Systems Biology: Theoretical Biology

Levien van Zon, Theoretical Biology, UU

Alan Hodgkin

Alan Hodgkin



Andrew Huxley

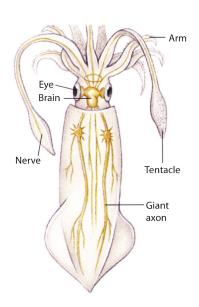
Alan Hodgkin

Andrew Huxley

Loligo forbesii

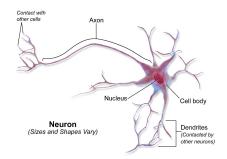
Introducing The Giant Squid Neuron

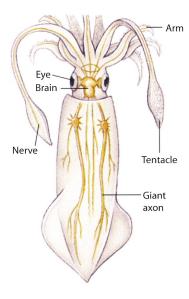
Loligo forbesii



Introducing The Giant Squid Neuron

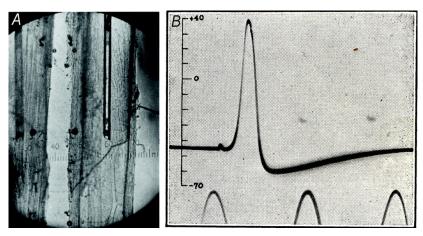
Loligo forbesii





Copyright @ 2009 Pearson Education, Inc.

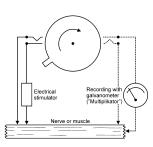
1939: First Recorded Action Potential (Inside an Axon)

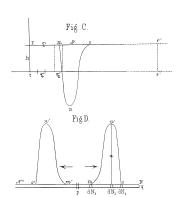


Hodgkin, A. L., & Huxley, A. F. (1939). Action potentials recorded from inside a nerve fibre. Nature, 144(3651), 710-711.

A Five-Year Interruption

Back In Time: Julius Bernstein (1839-1917)

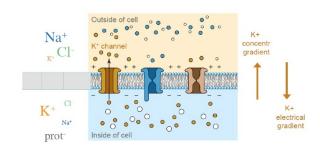




Bernstein's Membrane Theory (1902)

Walther Nernst (1864-1941)

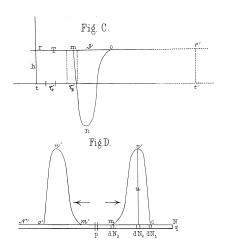
Electrochemical Equilibrium

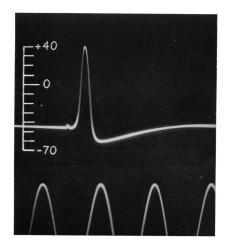


Nernst Equilibrium:

$$\overline{V_{K^+}} = rac{RT}{z_K F} \ln rac{[\mathrm{K}^+]_o}{[\mathrm{K}^+]_i} pprox -80 \,\mathrm{mV}$$

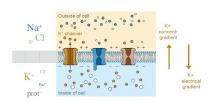
Bernstein's Membrane Theory Scrutinised





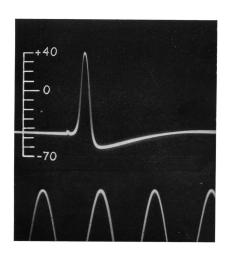
The Role Of Sodium?

Electrochemical Equilibrium



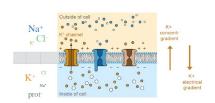
Nernst Equilibria:

 $\overline{V_{K^+}} \approx -80 \,\mathrm{mV}$



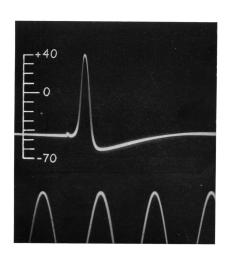
The Role Of Sodium?

Electrochemical Equilibrium

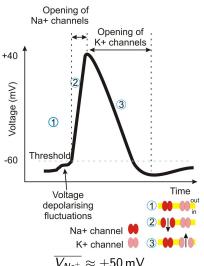


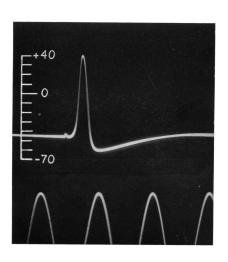
${\displaystyle \underbrace{\mathsf{Nernst}}} \ \mathsf{Equilibria} :$

 $\frac{\overline{V_{K^+}}}{\overline{V_{Na^+}}} \approx -80 \,\mathrm{mV}$

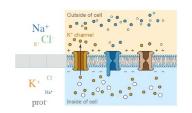


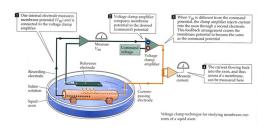
Hodgkin & Huxley's Theory

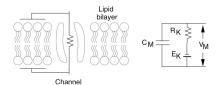


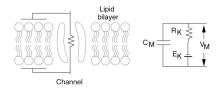


The Voltage Clamp



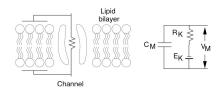






Current / and charge Q:

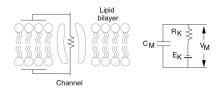
$$I = \frac{dQ}{dt}$$



Current / and charge Q:

$$I = \frac{dQ}{dt}$$

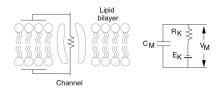
$$V = I \times R$$



Current / and charge Q:

$$I = \frac{dQ}{dt}$$

$$V = I \times R$$
$$I = \frac{1}{R} \times V$$



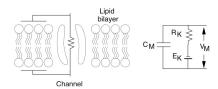
Current / and charge Q:

$$I = \frac{dQ}{dt}$$

$$V = I \times R$$

$$I = \frac{1}{R} \times V$$

$$I = G \times V$$



Current / and charge Q:

$$I = \frac{dQ}{dt}$$

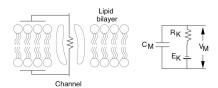
Capacitance *C*, **storing charge**:

$$Q(t) = V(t) \times C$$

$$V = I \times R$$

$$I = \frac{1}{R} \times V$$

$$I = G \times V$$



Current / and charge Q:

$$I = \frac{dQ}{dt}$$

Ohm's Law, resistance *R* and conductance *G*:

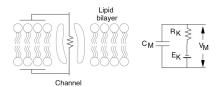
$$V = I \times R$$

$$I = \frac{1}{R} \times V$$

$$I = G \times V$$

$$Q(t) = V(t) \times C$$

$$\frac{dQ}{dt} = \frac{dV}{dt} \times C$$



Current / and charge Q:

$$I = \frac{dQ}{dt}$$

Ohm's Law, resistance *R* and conductance *G*:

$$V = I \times R$$

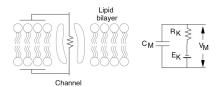
$$I = \frac{1}{R} \times V$$

$$I = G \times V$$

$$Q(t) = V(t) \times C$$

$$\frac{dQ}{dt} = \frac{dV}{dt} \times C$$

$$I = \frac{dV}{dt} \times C$$



Current / and charge Q:

$$I = \frac{dQ}{dt}$$

Ohm's Law, resistance *R* and conductance *G*:

$$V = I \times R$$

$$I = \frac{1}{R} \times V$$

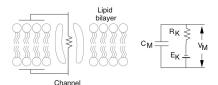
$$I = G \times V$$

$$Q(t) = V(t) \times C$$

$$\frac{dQ}{dt} = \frac{dV}{dt} \times C$$

$$I = \frac{dV}{dt} \times C$$

$$\frac{dV}{dt} = \frac{1}{C} \times I$$



Current / and charge Q:

$$I = \frac{dQ}{dt}$$

Ohm's Law, resistance *R* and conductance *G*:

$$V = I \times R$$

$$I = \frac{1}{R} \times V$$

$$I = G \times V$$

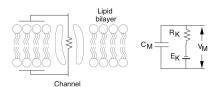
$$Q(t) = V(t) \times C$$

$$\frac{dQ}{dt} = \frac{dV}{dt} \times C$$

$$I = \frac{dV}{dt} \times C$$

$$\frac{dV}{dt} = \frac{1}{C} \times I$$

$$\frac{dV}{dt} = \frac{1}{C} \times G \times V$$



Current / and charge Q:

$$I = \frac{dQ}{dt}$$

Ohm's Law, resistance R and conductance G:

$$V = I \times R$$

$$I = \frac{1}{R} \times V$$

$$I = G \times V$$

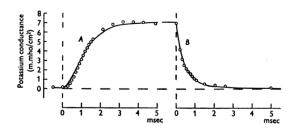
$$Q(t) = V(t) \times C$$

$$\frac{dQ}{dt} = \frac{dV}{dt} \times C$$

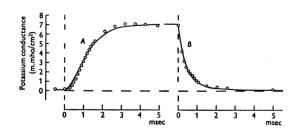
$$I = \frac{dV}{dt} \times C$$

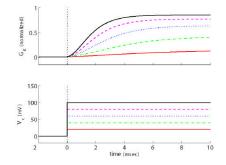
$$\frac{dV}{dt} = \frac{1}{C} \times G(V) \times V$$

Voltage Clamp Results

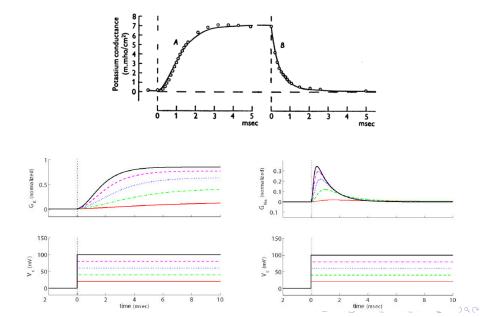


Voltage Clamp Results





Voltage Clamp Results



$$\frac{\mathsf{d}x}{\mathsf{d}t} = \alpha(1-x) - \beta x$$

Fraction of open channels: x

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha(1-x) - \beta x$$

Fraction of open channels: xFraction of closed channels: (1-x)

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha(1-x) - \beta x$$

Fraction of open channels: x Fraction of closed channels: (1-x) Rate at which channels open: α

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha(1-x) - \beta x$$

Fraction of open channels: x Fraction of closed channels: (1-x) Rate at which channels open: α Rate at which channels close: β

$$\frac{\mathsf{d}x}{\mathsf{d}t} = \alpha(1-x) - \beta x$$

Fraction of open channels: xFraction of closed channels: (1-x)Rate at which channels open: α Rate at which channels close: β

Equilibrium \overline{x} :

$$\alpha(1-x) - \beta x = 0$$

$$\frac{\mathsf{d}x}{\mathsf{d}t} = \alpha(1-x) - \beta x$$

Fraction of open channels: xFraction of closed channels: (1-x)Rate at which channels open: α Rate at which channels close: β

Equilibrium \overline{x} :

$$\alpha(1-x) - \beta x = 0$$
$$\alpha - \alpha x - \beta x = 0$$

$$\frac{\mathsf{d}x}{\mathsf{d}t} = \alpha(1-x) - \beta x$$

Fraction of open channels: xFraction of closed channels: (1-x)Rate at which channels open: α Rate at which channels close: β

Equilibrium \overline{x} :

$$\alpha(1-x) - \beta x = 0$$

$$\alpha - \alpha x - \beta x = 0$$

$$- (\alpha + \beta)x = -\alpha$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha(1-x) - \beta x$$

Fraction of open channels: x Fraction of closed channels: (1-x) Rate at which channels open: α Rate at which channels close: β

Equilibrium \overline{x} :

$$\alpha(1-x) - \beta x = 0$$

$$\alpha - \alpha x - \beta x = 0$$

$$-(\alpha + \beta)x = -\alpha$$

$$\bar{x} = \frac{\alpha}{\alpha + \beta}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha(1-x) - \beta x$$

Fraction of open channels: x

Fraction of closed channels: (1-x)

Rate at which channels open: α

Rate at which channels close: β

Equilibrium \overline{x} :

Solution x(t):

$$\alpha(1-x) - \beta x = 0$$

$$\alpha - \alpha x - \beta x = 0$$

$$-(\alpha + \beta)x = -\alpha$$

$$\overline{x} = \frac{\alpha}{\alpha + \beta}$$

$$x(t) = \overline{x} - (\overline{x} - x_0)e^{-(\alpha+\beta)t}$$

$$\frac{\mathsf{d}x}{\mathsf{d}t} = \alpha(1-x) - \beta x$$

Fraction of open channels: xFraction of closed channels: (1-x)Rate at which channels open: α Rate at which channels close: β

Equilibrium \overline{x} :

$$\alpha(1-x) - \beta x = 0$$

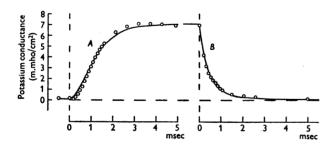
$$\alpha - \alpha x - \beta x = 0$$

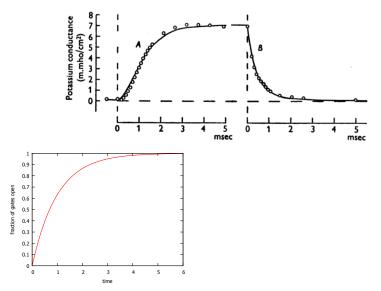
$$-(\alpha + \beta)x = -\alpha$$

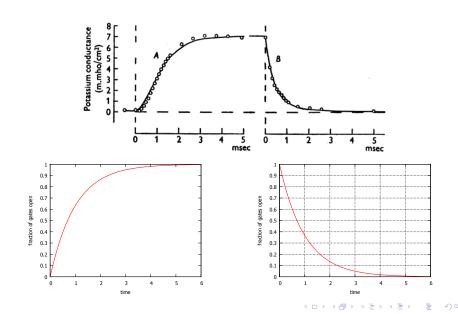
$$\overline{x} = \frac{\alpha}{\alpha + \beta}$$

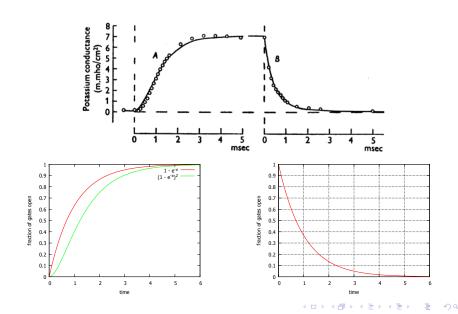
Solution x(t):

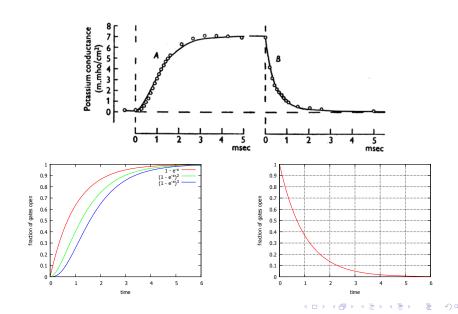
$$x(t) = \overline{x} - (\overline{x} - x_0)e^{-(\alpha + \beta)t}$$

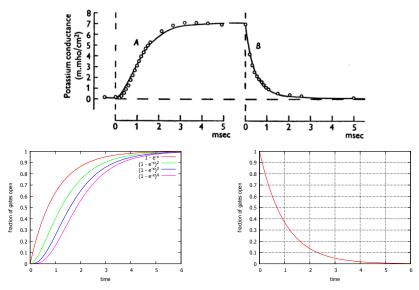


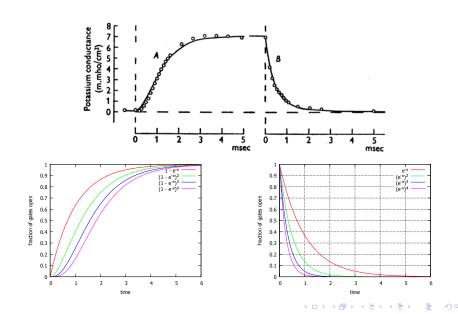


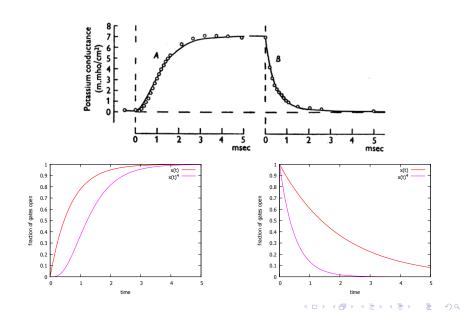


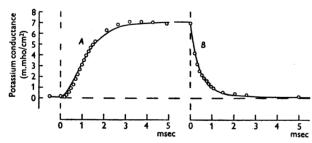


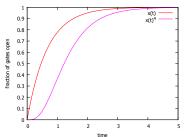




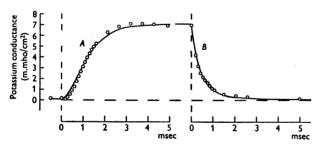


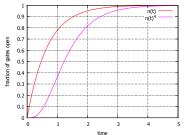




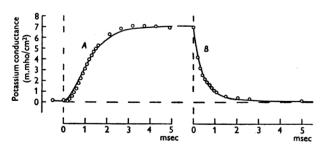


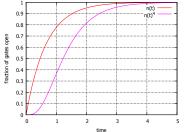
$$G = x \times G_{max}$$



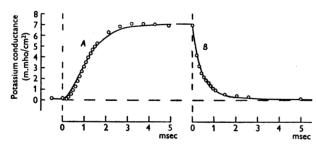


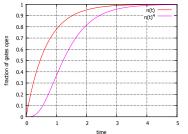
$$G = n \times G_{max}$$





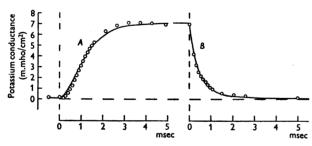
$$G = n^4 \times G_{max}$$

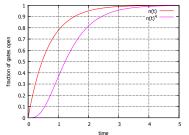




$$G = n^4 \times G_{max}$$

$$\textit{G} = \textit{n} \times \textit{n} \times \textit{n} \times \textit{n} \times \textit{G}_{\textit{max}}$$

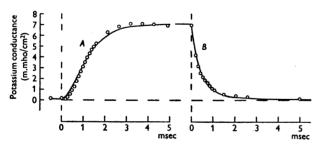


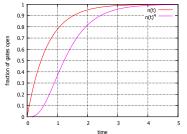


$$G = n^4 \times G_{max}$$

$$G = n \times n \times n \times n \times G_{max}$$

4 gates need to open, before 1 channel is open!

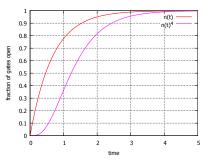




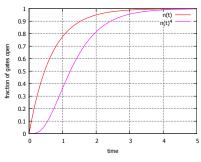
$$G(V) = n(V)^4 \times G_{max}$$

4 gates need to open, before 1 channel is open!

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha(1-n) - \beta n$$



$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha(V)(1-n) - \beta(V)n$$

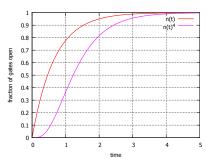


$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha(1-n) - \beta n$$

Fraction of open K^+ gates: n

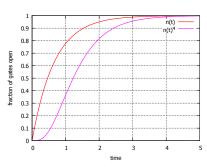
Equilibrium \overline{n} :

$$\overline{n} = \frac{\alpha}{\alpha + \beta}$$



$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha(1-n) - \beta n$$

Equilibrium
$$\overline{n}(V)$$
: $\overline{n}(V) = \frac{\alpha(V)}{\alpha(V) + \beta(V)}$



$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha(1-n) - \beta n$$

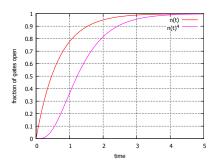
Fraction of open K^+ gates: n

Equilibrium
$$\overline{n}(V)$$
:

$$\overline{\mathbf{n}} = \frac{\alpha}{\alpha + \beta}$$

Time constant τ :

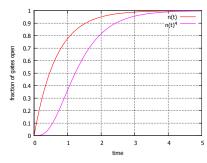
$$\tau_n = \frac{1}{\alpha + \beta}$$



$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha(1-n) - \beta n$$

Equilibrium
$$\overline{n}(V)$$
: $\overline{n} = \frac{\alpha}{\alpha + \beta}$

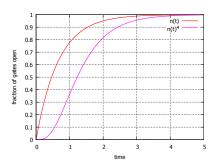
Time constant
$$\tau(V)$$
: $\tau_n(V) = \frac{1}{\alpha(V) + \beta(V)}$



$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha(1-n) - \beta n$$

Equilibrium
$$\overline{n}(V)$$
: $\overline{n} = \frac{\alpha}{\alpha + \beta}$

Time constant
$$\tau(V)$$
: $\tau_n = \frac{1}{\alpha + \beta}$

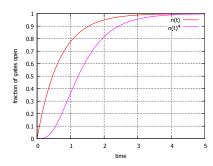


$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha(1-n) - \beta n$$

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \frac{1}{\tau_n}(\overline{n} - n)$$

Equilibrium
$$\overline{n}(V)$$
: $\overline{n} = \frac{\alpha}{\alpha + \beta}$

Time constant
$$\tau(V)$$
: $\tau_n = \frac{1}{\alpha + \beta}$

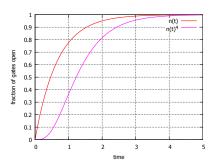


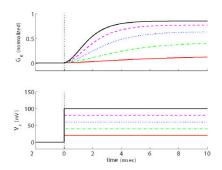
$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha(1-n) - \beta n$$

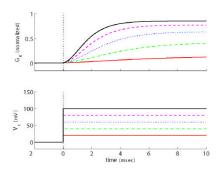
$$\frac{\mathrm{d}n}{\mathrm{d}t} = \frac{1}{\tau_n}(\overline{n} - n)$$

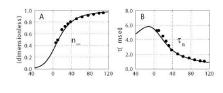
Equilibrium
$$\overline{n}(V)$$
 or n_{∞} : $\overline{n} = \frac{\alpha}{\alpha + \beta}$

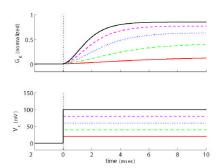
Time constant
$$\tau(V)$$
: $\tau_n = \frac{1}{\alpha + \beta}$

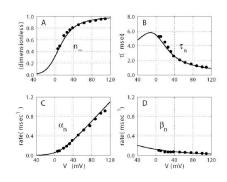


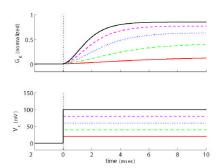


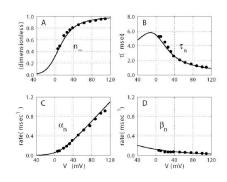


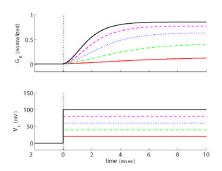


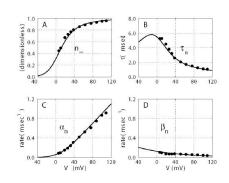




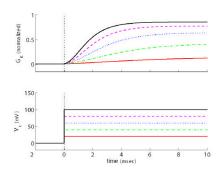


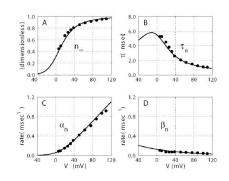




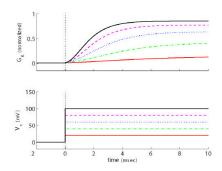


$$\alpha_n(V) = \frac{\overline{n}(V)}{\tau_n(V)}$$

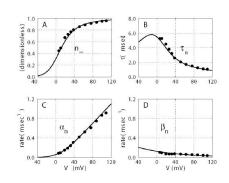




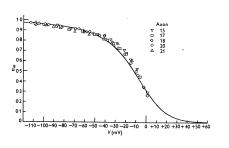
$$\alpha_n(V) = \frac{\overline{n}(V)}{\tau_n(V)}$$
$$\beta_n(V) = \frac{1 - \overline{n}(V)}{\tau_n(V)}$$

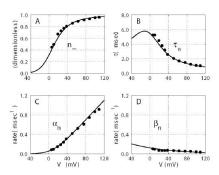


$$\alpha_n(V) = \frac{\overline{n}(V)}{\tau_n(V)}$$
$$\beta_n(V) = \frac{1 - \overline{n}(V)}{\tau_n(V)}$$



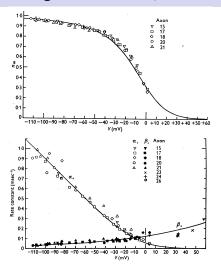
$$\alpha_n(V) = \frac{0.01(10 - V)}{e^{(1 - 0.1V)} - 1}$$
$$\beta_n(V) = 0.125e^{-\frac{V}{80}}$$

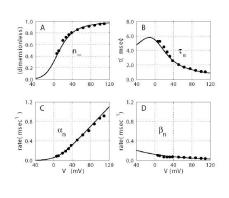




$$\alpha_n(V) = \frac{0.01(10 - V)}{e^{(1 - 0.1V)} - 1}$$

$$\beta_n(V) = 0.125e^{-\frac{V}{80}}$$





$$\alpha_n(V) = \frac{0.01(10 - V)}{e^{(1 - 0.1V)} - 1}$$

 $\beta_n(V) = 0.125e^{-\frac{V}{80}}$

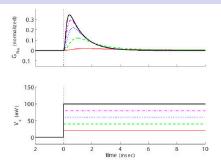
A "Simple" Model for Potassium Gates

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha_n(1-n) - \beta_n n$$

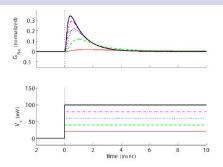
Fraction of open K^+ gates: n

Rate "constants" α and β are not constant, but depend on voltage:

$$\alpha_n(V) = \frac{0.01(10 - V)}{e^{(1 - 0.1V)} - 1}$$
$$\beta_n(V) = 0.125e^{-\frac{V}{80}}$$

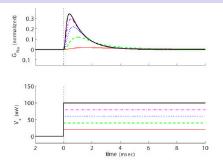


$$\frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_m(1-m) - \beta_m m$$



$$\frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_m (1 - m) - \beta_m m$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \alpha_h (1 - h) - \beta_h h$$

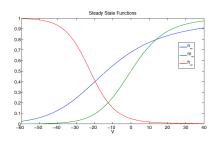


$$\frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_m (1 - m) - \beta_m m$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \alpha_h (1 - h) - \beta_h h$$

Two types of Na⁺ gates:

- m-gates open rapidly in response to voltage
- h-gates close slowly in response to voltage

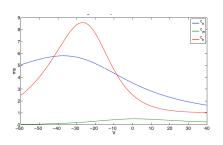


$$\frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_m (1 - m) - \beta_m m$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \alpha_h (1 - h) - \beta_h h$$

Two types of Na⁺ gates:

- m-gates open rapidly in response to voltage
- h-gates close slowly in response to voltage



$$\frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_m (1 - m) - \beta_m m$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \alpha_h (1 - h) - \beta_h h$$

Two types of Na⁺ gates:

- m-gates open rapidly in response to voltage
- h-gates close slowly in response to voltage

A "Simple" Model for Na⁺ Gates

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_m (1 - m) - \beta_m m$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \alpha_h (1 - h) - \beta_h h$$

Rate "constants" α and β are not constant, but depend on voltage:

$$\alpha_{m} = 0.1 \frac{25 - V}{e^{\frac{25 - V}{10}} - 1}$$

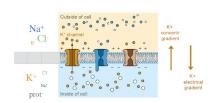
$$\beta_{m} = 4e^{\left(-\frac{V}{18}\right)}$$

$$\alpha_{h} = 0.07e^{\left(-\frac{V}{20}\right)}$$

$$\beta_{h} = \frac{1}{e^{\left(\frac{30 - V}{10}\right)} + 1}$$

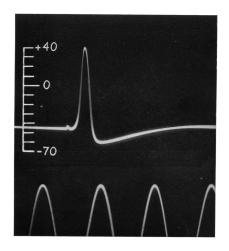
What Were We Modelling Again?

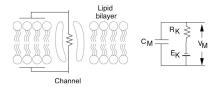
Electrochemical Equilibrium

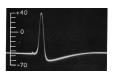


Nernst Equilibria:

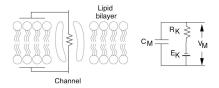
 $\frac{\overline{V_{K^+}}}{\overline{V_{Na^+}}} \approx -80 \,\mathrm{mV}$

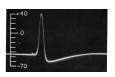




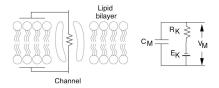


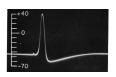
$$\frac{\mathrm{d} V}{\mathrm{d} t} = \frac{1}{C} \times G \times V$$





$$\frac{dV}{dt} = \frac{1}{C} \times G \times V$$
$$= \frac{1}{C} \times (I_{K^{+}} + I_{Na^{+}} + I_{R})$$

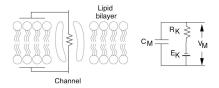


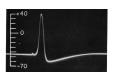


$$\frac{dV}{dt} = \frac{1}{C} \times G \times V$$

$$= \frac{1}{C} \times (I_{K^{+}} + I_{Na^{+}} + I_{R})$$

$$= \frac{1}{C} \times (G_{K^{+}} \times (\overline{V_{K^{+}}} - V))$$

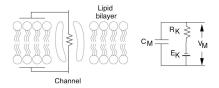


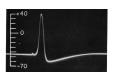


$$\frac{dV}{dt} = \frac{1}{C} \times G \times V$$

$$= \frac{1}{C} \times (I_{K^{+}} + I_{Na^{+}} + I_{R})$$

$$= \frac{1}{C} \times (G_{K^{+}} \times (\overline{V_{K^{+}}} - V) + G_{Na^{+}} \times (\overline{V_{Na^{+}}} - V)$$

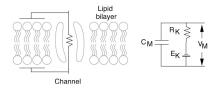


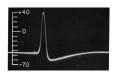


$$\frac{dV}{dt} = \frac{1}{C} \times G \times V$$

$$= \frac{1}{C} \times (I_{K^{+}} + I_{Na^{+}} + I_{R})$$

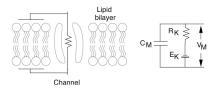
$$= \frac{1}{C} \times (G_{K^{+}} \times (\overline{V_{K^{+}}} - V) + G_{Na^{+}} \times (\overline{V_{Na^{+}}} - V) + G_{R} \times (\overline{V_{R}} - V))$$

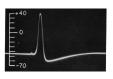




Describing the voltage:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{C} \times \left(G_{K^{+}} \times \left(\overline{V_{K^{+}}} - V\right) + G_{Na^{+}} \times \left(\overline{V_{Na^{+}}} - V\right) + G_{R} \times \left(\overline{V_{R}} - V\right)\right)$$

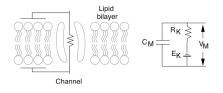


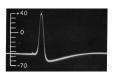


Describing the voltage:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{C} \times \left(G_{K^{+}} \times \left(\overline{V_{K^{+}}} - V\right) + G_{Na^{+}} \times \left(\overline{V_{Na^{+}}} - V\right) + G_{R} \times \left(\overline{V_{R}} - V\right)\right)$$

$$G_{K^+} = n^4 \times G_{Kmax}$$





Describing the voltage:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{C} \times \left(G_{K^{+}} \times \left(\overline{V_{K^{+}}} - V\right) + G_{Na^{+}} \times \left(\overline{V_{Na^{+}}} - V\right) + G_{R} \times \left(\overline{V_{R}} - V\right)\right)$$

$$G_{K^+} = n^4 \times G_{K max}$$

 $G_{Na^+} = m^3 \times h \times G_{Namax}$

The Full Model

$$\begin{cases} \frac{dV}{dt} = \frac{1}{C} (G_K(\overline{V_K} - V) + G_{Na}(\overline{V_{Na}} - V) + G_R(\overline{V_R} - V)) \\ \frac{dm}{dt} = \alpha_m (1 - m) - \beta_m m \\ \frac{dh}{dt} = \alpha_h (1 - h) - \beta_h h \\ \frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n \end{cases}$$

$$G_K = n^4 G_{K_{max}}$$

 $G_{Na} = m^3 h G_{Na_{max}}$

$$\alpha_n = \frac{0.01(10 - V)}{e^{(1 - 0.1V)} - 1}$$

$$\beta_n = 0.125e^{-\frac{V}{80}}$$

$$\alpha_m = 0.1\frac{25 - V}{e^{\frac{25 - V}{120}} - 1}$$

$$\beta_m = 4e^{(-\frac{V}{18})}$$

$$\alpha_h = 0.07e^{(-\frac{V}{20})}$$

$$\beta_h = \frac{1}{e^{(\frac{30 - V}{10})} + 1}$$

The Full Model

$$\begin{cases} \frac{dV}{dt} = \frac{1}{C} (G_K(\overline{V_K} - V) + G_{Na}(\overline{V_{Na}} - V) + G_R(\overline{V_R} - V)) \\ \frac{dm}{dt} = \alpha_m (1 - m) - \beta_m m \\ \frac{dh}{dt} = \alpha_h (1 - h) - \beta_h h \\ \frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n \end{cases}$$

with

$$G_K = n^4 G_{K_{max}}$$

 $G_{Na} = m^3 h G_{Na_{max}}$

But, how to test all this?

$$\alpha_n = \frac{0.01(10 - V)}{e^{(1 - 0.1V)} - 1}$$

$$\beta_n = 0.125e^{-\frac{V}{80}}$$

$$\alpha_m = 0.1\frac{25 - V}{e^{\frac{25 - V}{10}} - 1}$$

$$\beta_m = 4e^{(-\frac{V}{18})}$$

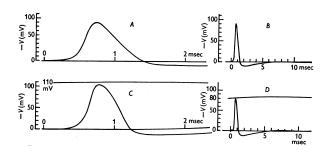
$$\alpha_h = 0.07e^{(-\frac{V}{20})}$$

$$\beta_h = \frac{1}{e^{(\frac{30 - V}{10})} + 1}$$

Please Wait, Calculating...

Brunsviga 20 — "Brains of Steel"

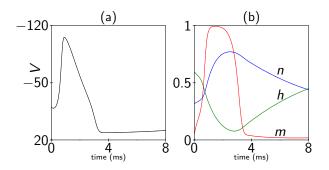
Please Wait, Calculating...



1963: Nobel Prize!

2003: Prediction Confirmed!

2014: Running it in GRIND



a Action potential: voltage dynamics

b Gate dynamics: m and h for Na⁺, n for K⁺

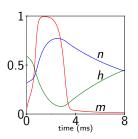
Note that in the original model, rest potential is $0\,\text{mV}$ and AP is $-90\,\text{mV}$

Simplifying the model

Quasi Steady State assumption

The m gate is much faster, so replace m by its steady-state \overline{m} :

$$m = \overline{m} = \frac{\alpha_m}{\alpha_m + \beta_m}$$



Simplifying the model

Quasi Steady State assumption

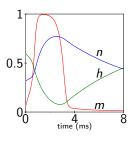
The m gate is much faster, so replace m by its steady-state \overline{m} :

$$m = \overline{m} = \frac{\alpha_m}{\alpha_m + \beta_m}$$

Conservation assumption

n and *h* are almost complementary: $n + h \simeq 0.91$ Use this to remove *n*:

$$n = 0.91 - h$$



Simplifying the model

Quasi Steady State assumption

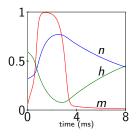
The m gate is much faster, so replace m by its steady-state \overline{m} :

$$m = \overline{m} = \frac{\alpha_m}{\alpha_m + \beta_m}$$

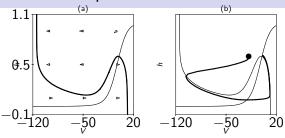
Conservation assumption

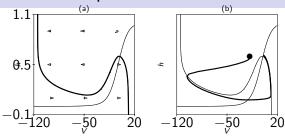
n and *h* are almost complementary: $n + h \simeq 0.91$ Use this to remove *n*:

$$n = 0.91 - h$$



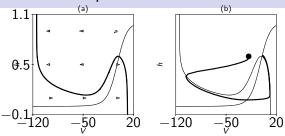
This reduces the model to 2 variables: V and h!



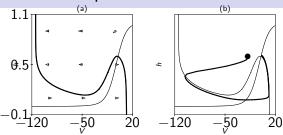


thin line: h nullcline heavy line: V nullcline

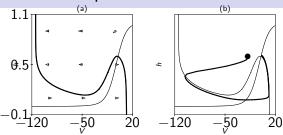
• Stable equilibrium



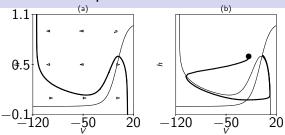
- Stable equilibrium
- V nullcline determines activation threshold



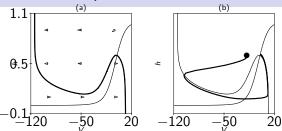
- Stable equilibrium
- V nullcline determines activation threshold
- Action potential is an excursion through phase space



- Stable equilibrium
- V nullcline determines activation threshold
- Action potential is an excursion through phase space
- The Na⁺ inactivation gate is slow, closing the h-gates takes time



- Stable equilibrium
- V nullcline determines activation threshold
- Action potential is an excursion through phase space
- The Na⁺ inactivation gate is slow, closing the h-gates takes time
- Recovery of the h-gates also takes time, causing refractory period



- Stable equilibrium
- V nullcline determines activation threshold
- Action potential is an excursion through phase space
- The Na⁺ inactivation gate is slow, closing the *h*-gates takes time
- Recovery of the *h*-gates also takes time, causing refractory period
- The voltage V changes much faster than the h-gates

Simplified, But Still Pretty Complicated!

$$\begin{cases} \frac{dV}{dt} = \frac{1}{C} (G_K(\overline{V_K} - V) + G_{Na}(\overline{V_{Na}} - V) + G_R(\overline{V_R} - V)) \\ \frac{dh}{dt} = \alpha_h (1 - h) - \beta_h h \end{cases}$$

$$\alpha_{n} = \frac{0.01(10 - V)}{e^{(1 - 0.1V)} - 1}$$

$$\beta_{n} = 0.125e^{-\frac{V}{80}}$$

$$G_{Na} = \overline{m}^{3} h G_{Na_{max}}$$

$$\overline{m} = \frac{\alpha_{m}}{\alpha_{m} + \beta_{m}}$$

$$\alpha_{m} = 0.1 \frac{25 - V}{e^{\frac{25 - V}{10}} - 1}$$

$$\beta_{m} = 4e^{(-\frac{V}{18})}$$

$$\alpha_{h} = 0.07e^{(-\frac{V}{20})}$$

$$\beta_{h} = \frac{1}{e^{(\frac{30 - V}{10})} + 1}$$

Simplified, But Still Pretty Complicated!

$$\begin{cases} \frac{dV}{dt} = \frac{1}{C} (G_K(\overline{V_K} - V) + G_{Na}(\overline{V_{Na}} - V) + G_R(\overline{V_R} - V)) \\ \frac{dh}{dt} = \alpha_h (1 - h) - \beta_h h \end{cases}$$

with

$$\alpha_n = \frac{0.01(10 - V)}{e^{(1 - 0.1V)} - 1}$$

$$G_K = (0.91 - h)^4 G_{Kmax}$$

$$G_{Na} = \overline{m}^3 h G_{Namax}$$

$$\overline{m} = \frac{\alpha_m}{\alpha_m + \beta_m}$$

$$\beta_m = 0.125e^{-\frac{V}{80}}$$

$$\alpha_m = 0.1 \frac{25 - V}{e^{\frac{25 - V}{10}} - 1}$$

$$\beta_m = 4e^{(-\frac{V}{18})}$$

$$\alpha_h = 0.07e^{(-\frac{V}{20})}$$
we do this simpler?
$$\beta_h = \frac{1}{e^{(\frac{30 - V}{20})} + 1}$$

Can't we do this simpler?

Yes We Can: The FitzHugh-Nagumo Model

$$\begin{cases} \frac{dV}{dt} = -V(V-a)(V-1) - W \\ \frac{dW}{dt} = \epsilon(V-bW) \end{cases}$$

$$\begin{cases} \frac{dV}{dt} = -V(V-a)(V-1) - W \\ \frac{dW}{dt} = \epsilon(V-bW) \end{cases}$$

Not mechanistic, but a phenomenological model

$$\begin{cases} \frac{dV}{dt} = -V(V-a)(V-1) - W \\ \frac{dW}{dt} = \epsilon(V-bW) \end{cases}$$

- Not mechanistic, but a phenomenological model
- V is voltage, W causes inactivation, refractoriness

$$\begin{cases} \frac{dV}{dt} = -V(V-a)(V-1) - W \\ \frac{dW}{dt} = \epsilon(V-bW) \end{cases}$$

- Not mechanistic, but a phenomenological model
- ullet V is voltage, W causes inactivation, refractoriness
- ullet is small, so W is a slow variable that follows V

$$\begin{cases} \frac{dV}{dt} = -V(V-a)(V-1) - W \\ \frac{dW}{dt} = \epsilon(V-bW) \end{cases}$$

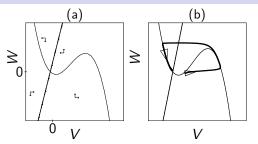
- Not mechanistic, but a phenomenological model
- ullet V is voltage, W causes inactivation, refractoriness
- ullet ϵ is small, so W is a slow variable that follows V
- The $\frac{dW}{dt} = 0$ nullcline is a straight line: $W = \frac{1}{b}V$

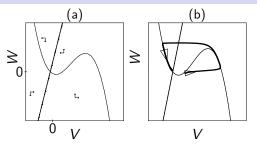
$$\begin{cases} \frac{dV}{dt} = -V(V-a)(V-1) - W \\ \frac{dW}{dt} = \epsilon(V-bW) \end{cases}$$

- Not mechanistic, but a phenomenological model
- ullet V is voltage, W causes inactivation, refractoriness
- ullet ϵ is small, so W is a slow variable that follows V
- The $\frac{dW}{dt} = 0$ nullcline is a straight line: $W = \frac{1}{b}V$
- The $\frac{dV}{dt} = 0$ nullcline is a cubic function: W = -V(V a)(V 1)

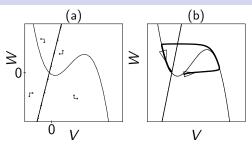
$$\begin{cases} \frac{dV}{dt} = -V(V-a)(V-1) - W \\ \frac{dW}{dt} = \epsilon(V-bW) \end{cases}$$

- Not mechanistic, but a phenomenological model
- ullet V is voltage, W causes inactivation, refractoriness
- ullet is small, so W is a slow variable that follows V
- The $\frac{dW}{dt} = 0$ nullcline is a straight line: $W = \frac{1}{b}V$
- The $\frac{dV}{dt} = 0$ nullcline is a cubic function: W = -V(V a)(V 1)
- The V-nullcline intersects the V-axis at: V = 0, V = a and V = 1

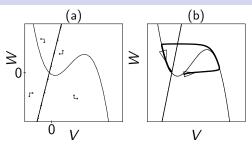




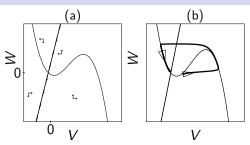
• Similar to the simplified HH model (but V and W axis mirrored)



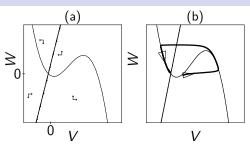
- Similar to the simplified HH model (but V and W axis mirrored)
- Stable equilibrium



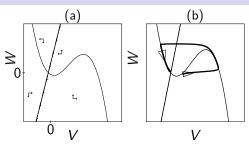
- Similar to the simplified HH model (but V and W axis mirrored)
- Stable equilibrium
- V = a is the activation threshold



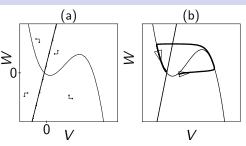
- Similar to the simplified HH model (but V and W axis mirrored)
- Stable equilibrium
- V = a is the activation threshold
- Action potential is an excursion through phase space



- Similar to the simplified HH model (but V and W axis mirrored)
- Stable equilibrium
- V = a is the activation threshold
- Action potential is an excursion through phase space
- The inactivation "gate" W is slow, inactivation takes time (right)

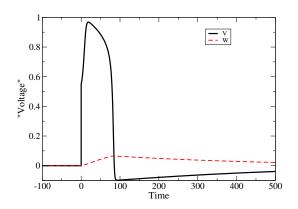


- Similar to the simplified HH model (but V and W axis mirrored)
- Stable equilibrium
- V = a is the activation threshold
- Action potential is an excursion through phase space
- The inactivation "gate" W is slow, inactivation takes time (right)
- Recovery of W also takes time (left), causing refractory period



- Similar to the simplified HH model (but V and W axis mirrored)
- Stable equilibrium
- V = a is the activation threshold
- Action potential is an excursion through phase space
- The inactivation "gate" W is slow, inactivation takes time (right)
- Recovery of W also takes time (left), causing refractory period
- ullet The voltage V changes much faster than the variable W

FitzHugh-Nagumo: Behavior in time



Behavior of V resembles an action potential.

Hodgkin-Huxley model

• Key insight: different currents through separate channels.

- **Key insight**: different currents through separate channels.
- Approach: measure and model them separately, then combine.

- **Key insight**: different currents through separate channels.
- Approach: measure and model them separately, then combine.
- Ugly equations are just to fit data precisely.

- **Key insight**: different currents through separate channels.
- Approach: measure and model them separately, then combine.
- Ugly equations are just to fit data precisely.
- Key is opening and closing of gates that control open state of channels.

- **Key insight**: different currents through separate channels.
- Approach: measure and model them separately, then combine.
- Ugly equations are just to fit data precisely.
- Key is opening and closing of gates that control open state of channels.
- Different currents and gates control different phases of the action potential:

- Key insight: different currents through separate channels.
- Approach: measure and model them separately, then combine.
- Ugly equations are just to fit data precisely.
- Key is opening and closing of gates that control open state of channels.
- Different currents and gates control different phases of the action potential:
 - depolarization (Na⁺, *m*-gate)

- Key insight: different currents through separate channels.
- Approach: measure and model them separately, then combine.
- Ugly equations are just to fit data precisely.
- Key is opening and closing of gates that control open state of channels.
- Different currents and gates control different phases of the action potential:
 - depolarization (Na⁺, m-gate)
 - repolarization (Ka⁺, *n*-gate)

- Key insight: different currents through separate channels.
- **Approach**: measure and model them separately, then combine.
- Ugly equations are just to fit data precisely.
- Key is opening and closing of gates that control open state of channels.
- Different currents and gates control different phases of the action potential:
 - depolarization (Na⁺, m-gate)
 - repolarization (Ka⁺, *n*-gate)
 - refractoriness (Na⁺, h-gate)

- Key insight: different currents through separate channels.
- **Approach**: measure and model them separately, then combine.
- Ugly equations are just to fit data precisely.
- Key is opening and closing of gates that control open state of channels.
- Different currents and gates control different phases of the action potential:
 - depolarization (Na⁺, m-gate)
 - repolarization (Ka⁺, *n*-gate)
 - refractoriness (Na⁺, h-gate)
- Model can be simplified from 4 to 2 equations

- Key insight: different currents through separate channels.
- **Approach**: measure and model them separately, then combine.
- Ugly equations are just to fit data precisely.
- Key is opening and closing of gates that control open state of channels.
- Different currents and gates control different phases of the action potential:
 - depolarization (Na⁺, m-gate)
 - repolarization (Ka⁺, *n*-gate)
 - refractoriness (Na⁺, h-gate)
- Model can be simplified from 4 to 2 equations
- The model predicted voltage sensitive, time dependent transmembrane protein channels, long before they were found!

Fitzhugh-Nagumo model

• Reaching a simpler 2 variable model with similar behaviour, by considering which ingredients are necessary.

- Reaching a simpler 2 variable model with similar behaviour, by considering which ingredients are necessary.
- Below the threshold a no real excitation occurs.

- Reaching a simpler 2 variable model with similar behaviour, by considering which ingredients are necessary.
- Below the threshold a no real excitation occurs.
- Beyond the threshold a excitation must occur.

- Reaching a simpler 2 variable model with similar behaviour, by considering which ingredients are necessary.
- Below the threshold a no real excitation occurs.
- Beyond the threshold a excitation must occur.
- After excitation refractoriness must occur.

- Reaching a simpler 2 variable model with similar behaviour, by considering which ingredients are necessary.
- Below the threshold a no real excitation occurs.
- Beyond the threshold a excitation must occur.
- After excitation refractoriness must occur.
- Slow W-variable represses fast V-variable, and ensures refractoriness