JOURNAL OF VIROLOGY, Jan. 1997, p. 161-168
0022-538X/97/$04.00+0
Copyright © 1997, American Society for Microbiology

Vol. 71, No. 1

Clinical Data Sets of Human Immunodeficiency Virus Type 1
Reverse Transcriptase-Resistant Mutants Explained by a
Mathematical Model

NIKOLAOS 1. STILIANAKIS,' CHARLES A. B. BOUCHER,> MENNO D. DE JONG,?
REMKO VAN LEEUWEN,?> ROB SCHUURMAN,? anp ROB J. DE BOER**

Theoretical Division, Group T-10, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, and
Department of Clinical Microbiology, Utrecht University, 3508 GA Utrecht,® National AIDS Therapy
Evaluation Centre, University of Amsterdam, Academic Medical Centre,> and Theoretical Biology,
Utrecht University, 3584 CH Utrecht,* The Netherlands

Received 8 March 1996/Accepted 16 September 1996

Treatment of human immunodeficiency virus type 1 (HIV-1) infection during the clinical latency phase with
drugs inhibiting reverse transcriptase (RT) reduces the HIV-1 RNA load and increases the CD4* T-cell count.
Typically, however, the virus evolves mutations in the RT gene that circumvent the drugs. We develop a
mathematical model for this situation. The model distinguishes quiescent from activated CD4* T cells,
incorporates the fact that only activated cells can become productively infected by HIV-1, embodies empirical
estimates for the drug resistance and the mutation frequency for each of the HIV-1 drug-resistant mutants, and
assumes the antiviral immune response to remain constant over the course of the experiments. We analyze
clinical data on the evolution of drug-resistant mutants for the RT inhibitors lamivadine and zidovudine. The
results show that the evolutionary sequence of the drug-resistant mutants in both data sets is accounted for by
our model, given that lamivudine is more effective than zidovudine. Thus, current empirical estimates of the
mutation frequencies and the drug resistances of the mutants suffice for explaining the data. We derive a
critical treatment level below which the wild-type HIV-1 RNA load can rebound before the first drug-resistant
mutant appears. Our zidovudine data confirm this to be the case. Thus, we demonstrate in the model and the
data that the rebound of the HIV-1 RNA load in the case of zidovudine is due to the outgrowth of wild-type virus
and the first drug-resistant mutant, whereas that in the case of lamivudine can only be due to the drug-
resistant mutants. The evolution of drug resistance proceeds slower in the case of zidovudine because (i)
zidovudine is not as effective as lamivudine and (ii) the first zidovudine drug-resistant mutant is competing

with the rebounding wild-type virus.

The emergence of human immunodeficiency virus type 1
(HIV-1) isolates resistant to protease- and reverse transcrip-
tase (RT)-inhibiting drugs during treatment is well docu-
mented in several clinical studies (3, 21, 22, 34, 36). One
observes a fast reduction of the HIV-1 RNA load, which is
typically accompanied by an increase of CD4" T-cell counts.
After several weeks of treatment, however, the viral RNA load
rebounds. The rebound is frequently, i.e., not always (8), as-
sociated with the appearance of drug-resistant mutants. Geno-
typic analysis demonstrates that the resistance to RT is caused
by specific amino acid changes at certain codons in the HIV-1
RT gene (21, 22). These point mutations appear in a typical
order and in the case of zidovudine become combined, con-
ferring higher resistance (4, 8, 35). Similarly, the protease
studies describe mutations in the HIV-1 protease gene (36).

In this report, we first investigate whether the data that we
have on the mutation frequencies and drug resistance of the
mutants can explain the precise evolutionary order in which
the mutants arise. This question is addressed for two indepen-
dent clinical data sets on treatment with lamivudine (35) and
zidovudine (8). Since the model indeed explains the precise
evolutionary order, we find good agreement between model
and data. Second, data obtained from treatment with zidovu-
dine demonstrate that the HIV-1 RNA load rebounds before
the drug-resistant mutants appear (8). We describe that such a
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rebound of the HIV-1 RNA load can adequately be explained
by the increase of the CD4™ T-cell population during treat-
ment.

Our model extends previous mathematical models for the
dynamics of the HIV-1 infection of the CD4* target cells (11,
32) and for evolution of drug-resistant mutants (14, 28) be-
cause we (i) use recently derived parameters indicating that
HIV-1 infection is very dynamic process (17, 36) and (ii) in-
corporate recent detailed parameter estimates for the drug
resistance and the mutation frequency of the mutants.

MATERIALS AND METHODS

Model. HIV-1-infected individuals typically have a long clinical latency phase
in which (i) HIV-1 is present abundantly in lymphoid organs (9, 31), (ii) the
CD4" population is lower than normal (14), and (iii) HIV-1 and HIV-infected
CD4* cells are turning over rapidly (17, 36). Our model describes a particular
time point somewhere in the clinical latency phase. This time point is an equi-
librium between HIV-1 infection and T-cell renewal. We study the effects of
treatment with drugs inhibiting the HIV-1 infection process. The essential as-
sumption in our model is that the immune response to the virus remains invariant
over the time course of the clinical experiments. By this assumption, HIV-1 is
(transiently) limited by availability of target CD4™ T cells (5, 6). The typical
response of HIV-1 to drug treatment is the evolution of drug-resistant mutants.
The drug resistance of these mutants is known and is incorporated in the model.
In the model, we distinguish quiescent CD4 " T cells Q, target cells or activated
CD4™ T cells T, and virus particles V; and productively infected CD4™ T cells I;
for virus strain j (Fig. 1).

In adults, the CD4* T-cell compartment is largely maintained by self-renewal
(25). Hence we allow the quiescent CD4™ T cells to become activated by low-
level activation at a rate «, they die at a rate 3,, and they appear by the
proliferation of activated T cells at a maximum rate r; i.e., we write
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FIG. 1. A scheme of the model. Resting T cells Q become activated at a rate
a and die at a rate 8,. Activated cells T return to the quiescent state after
division into two daughter cells at a rate r. Viral particles } infect activated cells
at a rate B, thus generating productively infected cells /. V; and I; denote one
particular strain of virus; V, with I, denote another strain. The w parameters
represent mutation: at a rate ., a viral strain copies itself correctly; at a rate .,
however, RT errors create novel strains. Productively infected T cells I are
cleared at a rate

dQ T

& T T Ty, @ T %0 M
where the 2/(1+ 7T /Tma) term defines a density-dependent regulation of the
proliferation rate. When T\o; = Ty proliferation stops. The activated CD4* T
cells T appear by activation of quiescent cells, they revert to the quiescent stage
at a rate r, and they are infected by all virus strains at a rate 3 weighted by the
total RT fitness f; of the strain; i.e., we write

dT
S = eQ — T = BT X fV, @)

where the sum term says that CD4" T cells are infected by all virus strains at a
rate weighted by the total fitness of the strain.

The productively infected CD4™" T cells appear by the infection of target cells
by virus. Because infection may involve mutations, i.e., RT errors, we implement
a mutation matrix M incorporating the estimated mutation frequencies. Matrix
element M is the mutation frequency by which strain j appears from strain /.
Thus, the diagonal elements M;; give the frequency at which strain j correctly
transcribes itself. Hence we write

dl;
G = BT 2 MfY = ol 3
1

where §; is the turnover rate of productively infected cells. Thus, the total
number of CD4* T cells in our model is defined by T, = Q + T + ;I
Assuming that the virus density is proportional to the density of infected CD4™
T cells, and appropriate scaling, allows us to write V; = [. Hence we may
arbitrarily define the total HIV-1 RNA load as RNA = 10* 2 V; copies per ml,
which gives realistic viral RNA loads (see below). The estimated half-life of
quiescent CD4™ T cells is about 1,000 days (29); i.e., we set 8, = 10> per day.
Activated cells revert to the quiescent stage by a single cell division at a rate of
one per day (i.e., r = 1 per day). Because in normal individuals about 2% of the
T cells are activated, we set o = 0.02 per day as the activation rate of quiescent
cells. Setting T, = 1,100 cells per wl, we obtain an equilibrium of about 1,000
CD4* T cells per pl (26). The turnover of productively infected cells, which can
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be due to an effective cellular immune response or to viral cytopathicity, is
estimated to be 8; = 0.5 per day (17, 33, 36). The in vivo infection rate is not
known. Setting B = 0.05, we obtain reasonable CD4" T-cell counts (see below).
Fitness. Each of the virus strains has a total RT fitness f; which combines the
fitness in the absence of the drug with the drug resistance in its presence.
Previous estimates for the fitness of drug-resistant mutants in the absence of RT
were just a few percent less than that of the wild-type virus (5, 15). Recent
experiments, however, suggest that these fitness differences may be considerable,
i.e., more than 10% (1, 16, 30a). Here we scale the fitness of the wild-type virus
to 1, ie., we set ey, = 1, and conservatively choose as a default value for the
fitness of all mutant strains ¢; = 0.99. For the fitness in the presence of the drug
f;» we use the conventional notion of the ICs, which is the drug concentration at
which the effect of the drug is half-maximal. Thus, we employ the classical
saturation function for the ICs, (18), describing the drug resistance as

¢

5 =14 DR, @

where D is the effective drug concentration and R; is the ICs, of strain j. We
consider only mutants with a resistance higher than that of the wild-type virus.
Hence, we again scale R,,, = 1 and require for all mutants j that R; > 1. In the
absence of the drug, i.e., when D = 0, the fitness is defined by the RT fitness e;.
In the presence of the drug, the total fitness becomes half-maximal at an effective
drug concentration of D = R;.

Mutation frequencies. In our data sets, we consider mutations in the RT gene
providing resistance to the RT inhibitors. The first measure to include in the
mutation matrix is the number of nucleotide changes that are involved in going
from strain / to strain j. Recent work (27) showed that the basic error rate of RT
is on the order of 3 X 10~° mutations per nucleotide and that about two-thirds
of the mutations are base pair substitutions. In the context of the RT gene,
however, different nucleotide changes are not equally probable. It is well estab-
lished that the G—A mutation is preferred over all others. Indeed, about half of
the 2 X 1072 base pair substitutions per nucleotide are G—A point mutations
(27). Our G—A mutation frequency is therefore set to u, = 10> per nucleotide.
Five other mutations are involved in our study: A—G, C—A, A—C, T—A, and
A—T. The last four would be least probable because they involve transversions.
Following Keulen et al. (20), we therefore classify the mutation rates into three
classes, w; > py > us, setting P(G—A) = py, P(A—G) = p,, and P(C—A) =
P(A—C) = P(T—A) = P(A—T) = ps3. Due to a lack of good data for the
low-frequency mutations, we arbitrarily set the last two rates to p, = p;/2 and ps
= py/10. The frequency M; that a virus correctly copies itself can be approxi-
mated by considering that RT is 1,680 bases long and that the basic error rate is
on the order of 3 X 1077 (27); i.e., we set M;; = py = (1 — 3 X 1077)'6%0 = 0.95.
We model mutation as a continuous process, which implies that all mutants are
present at low frequency before the onset of treatment (30). We ignore muta-
tions involving more than two nucleotide changes; i.e., the minimum mutation
frequency that we consider is p.3.

Disease progression. During the clinical latency stage, disease progression is
characterized by slowly decreasing CD4 counts and slowly increasing HIV-1
RNA levels. The patients in our data have different CD4 counts and are thus
assumed to be in different stages of disease progression. Because we pick just one
time point in the clinical latency phase, we here refrain from modeling disease
progression. However, we have to be able to study different time points, i.e.,
patients with different CD4 counts. Since disease progression is associated with
hyperactivation of the immune system (12), we model progression by setting
different values for «, the T-cell activation rate. Increasing « indeed decreases
the CD4 count and increases the viral load (7). The data supporting this (17) are
discussed below.

RESULTS

Our detailed data on the evolution of HIV-1 drug-resistant
mutants consider mutations in RT selected during treatment
with either zidovudine (8) or lamivudine (35). These two drugs
differ in efficacy (10). With respect to the nadir, serum levels of
HIV-1 RNA drop 1 to 2 logs in about a week with lamivudine
treatment (35), whereas administration of zidovudine leads to
a drop of fourfold in 2 to 4 weeks (8, 24). The two drugs also
differ in the time scale of the rebound in the HIV-1 RNA load,
which is 2 to 3 weeks for lamivudine (35) and 2 months for
zidovudine (8). We show that these differences in amplitude
and time scale can adequately be explained by a difference in
effective drug concentration D. Recent studies estimated the
dynamics of HIV-1 RNA and CD4* T-cell turnover in analyser
using potent protease or RT inhibitors (17, 36). The effective-
ness of these drugs is comparable to that of lamivudine. We
therefore model all of these data sets by considering a low
effective drug concentration in the case of zidovudine (where
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FIG. 2. The parameters of the model are confirmed by comparing them to
recent data (17, 36). Parameters: r = 1, T,,,, = 1,100, B = 0.05, 3, = 0.01, 3, =
0.5, ey = 1, Ry, = 1, and p, = 0.95. In this figure, mutations into drug-resistant
mutants are switched off, i.e., b, = wy = p3 = 0. (a) « = 0.1 and D = 100; (b)
o = 0.04 and D = 100; (¢) @ = 0.04 and D = 1.

D = 1 are our typical values) and a high effective drug con-
centration in all other cases (i.e., D = 100 is our typical value).
We first study how our model fits the recently estimated dy-
namic parameters (17, 36).

Dynamics in the absence of mutation. The empirical data
are obtained from the rates at which CD4 counts recover
following anti-HIV-1 treatment (17, 36). We now perform the
same treatment in our model and ignore mutation by setting .,
=, = pz = 0 (Fig. 2). In the protease data, the average CD4
count is on the order of 200 CD4* cells per pl (17, 36). In Fig.
2a, we choose o = 0.1 so that the equilibrium at day 0 has 7,
= 200. The average CD4 count in the zidovudine data is about
400 CD4™ cells (8). Thus, in Fig. 2b and c, we set « = 0.04 in
order to have T, = 400. In Fig. 2a and b, we depict a very
effective drug (like ritonavir or lamivudine) by setting D = 100
at day 0; in Fig. 2c, we depict a less effective drug (like zidovu-
dine) by setting D = 1 at day 0.

The model behavior corresponds closely with the data. The
rate at which the viral RNA level decreases strongly depends
on the effective drug concentration D. In Fig. 2a and b, where
D = 100, the viral RNA level decreases with exactly the same
slope as is reported in the recent empirical data (17, 36), i.e.,
with a slope 3, (see Appendix). For the potent drugs, this slope
is rather independent of the CD4 count: the slopes are very
similar in Fig. 2a and b. This is also the case in the data of Ho
et al. (17). The slopes with which the CD4 counts recover
depend on the initial CD4 count, as they do in the published
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data (17). In Fig. 2a and b, the exponential slopes, i.e., {1n[T,
(10))/[T(0)]}/10, are 0.04 and 0.01, respectively. For CD4
counts of 200 and 400, respectively, these two values match the
data (17).

The picture becomes much more complicated when the drug
is less effective, as is the case for the zidovudine data. For D =
1, we show in Fig. 2¢ that the slope with which the viral RNA
level declines is less steep. In the appendix, we show that this
slope is determined by a combination of factors: the total
fitness of the wild-type virus, the initial CD4 count, and the
CD4 recovery rate. Because the viral RNA level decreases only
slowly, the rate at which the CD4 level recovers is also slow.
We conclude that the time scale at which the viral RNA level
drops and the CD4 count recovers is determined by the effec-
tive drug concentration D.

In Fig. 2c, we observe that after a month of treatment, the
viral RNA level rebounds. If we were to run this simulation
longer, the system would approach a new equilibrium in which
the HIV-1 RNA load is similar to that of day 0, while CD4"
T-cell counts have approximately doubled. Thus, halving the
fitness, by setting D = 1 (equation 4), approximately doubles
the CD4 count. Since there are no drug-resistant mutants in
this simulation, the viral rebound is entirely due to the recovery
of the CD4" cells (which increases the virus growth rate).
Exactly the same phenomenon is observed in our data: after a
month of zidovudine treatment, virus RNA levels rebound (8).
In the data, this happens before the first drug-resistant mutants
appear. The rebound, being due to the recovery of the CD4™
cells, is therefore nothing more than a classical predator-prey
oscillation (28).

The only difference between Fig. 2b and c is the effective
drug concentration D. The total fitness of the HIV-1 wild-type
in Fig. 2bis f,,; = 1/(1 + 100) = 0.01 (see equation 4) and that
in Fig. 2c is f,,, = 1/(1 + 1) = 0.5. Apparently there exists a
critical total fitness below which the virus cannot survive. This
is studied more rigorously in Fig. 3, where we plot the stable
equilibrium HIV-1 RNA load (Fig. 3a) and the CD4" T-cell
count (Fig. 3b) as a function of the total fitness f,,,. The critical
total fitness corresponds to the point where the equilibrium
HIV-1 RNA drops to zero and the CD4™" T cell counts reaches
the flat noninfected equilibrium. The critical total fitness de-
pends on the T-cell activation rate o but has an order of
magnitude of 20% of the maximum fitness. Interestingly, the
equilibrium viral load is almost a step function of the total
fitness (Fig. 3a). Thus, decreasing the total fitness, e.g., by
giving an RT inhibitor, while maintaining it above the critical
value hardly affects the equilibrium HIV-1 RNA load. Instead,
the effect of changing the total fitness is largely reflected in the
equilibrium CD4" T-cell count.

Figure 2b in the report of Ho et al. (17) depicts that the
per-capita growth rate of CD4™ T cells decreases with increas-
ing CD4" baseline counts. As shown in Fig. 2a and b, our
model matches these data. The per-capita CD4 " T-cell growth
rate in our model has a similar inverse relationship with the
baseline CD4* count due to two separate mechanisms. First,
the growth rate decreases with the CD4" counts because of
our density-dependent proliferation term. Second, in our
model, low CD4" counts correspond to a late latency stage
with higher T-cell activation rates.

Lamivudine. In a recent study, 20 patients were treated with
the RT inhibitor lamivudine (35). In this study, CD4" T-cell
counts, serum HIV-1 RNA loads, and the frequency of three
drug-resistant mutants were assessed at baseline and at 2 days
and 1, 2, 3, 4, 6, and 8 weeks after the onset of treatment.
Resistance to lamivudine is caused by a mutation in codon 184
of the HIV-1 RT gene, which replaces the wild-type methio-
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FIG. 3. The equilibrium level of the HIV-1 RNA load (a) and the CD4™" T-cell count (b) as a function of the total fitness (i.e., f;) in the absence of mutation. This
plot was generated by switching off mutation and by calculating the equilibrium of the wild-type virus and the total CD4™" count for all total fitness values between 0
and 1. Knowing the total fitness of any strain, in either the presence or the absence of the drug, one can determine from these curves the equilibrium that would be
attained by that strain. The region where the equilibrium HIV-1 level becomes zero, i.e., around a total fitness f; = 0.2, gives the critical total fitness required for

eradication of that strain. Parameters are as in Fig. 2.

nine residue (ATG) with either an isoleucine (ATA) or a
valine (i.e., GTG or GTA) (4, 21, 22). These mutants have a
500- to 1,000-fold reduction in susceptibility, while the drug
resistance of the valine mutant seems to be somewhat higher
than that of the isoleucine mutant (35). We therefore set R, =
1, Ri, = 500, and R,,; = 750. For the fitness in the absence of
the drug, we conservatively set e, = 1 and e;,, = e,,; = 0.99.

Using the mutation frequencies estimated above, we obtain
the mutation matrix

Ho M2 B B2

B b B

M2 M2 o (3 %]
Rz Mo g Mo

where the rows and columns are ordered from the wild-type
virus to the isoleucine mutant to the valine GTG mutant to the
valine GTA mutant. Each row gives the mutation frequencies
with which that strain is created by each of the other strains.
For example, the isoleucine mutant is expected to be created
from the wild-type virus most often because the second entry in
the first column (i.e., p,) is larger than all others (ignoring the
nonmutational diagonal elements). Similarly, the valine mu-
tant is expected to mutate backward into the wild-type virus
most often because the third entry in row one (i.e., ) is larger
than all others.

Most patients had a 1- to 3-log decrease in the HIV-1 RNA
level in about a week. We therefore opt for a highly effective
drug concentration; i.e., we set D = 100. The HIV-1 RNA and
CD4™" cell count data differ strongly from patient to patient.
Plotting the median mutant frequencies reveals that the iso-
leucine mutant comes first and that it is rapidly replaced by the
GTG valine mutant (35). Since taking median values tends to
smooth the data, one would have to compare the model be-
havior to that of each individual patient. Here we make a
compromise by picking one patient whose HIV-1 RNA data
resemble those of the median and whose CD4* counts in-
crease in response to the therapy. Thus, we pick patient C0021,
who has an initial CD4* count of 220 cells per pl and an HIV-1
RNA level of approximately 4 X 10* RNA copies, which is
representative for the 20 patients in the study (35). We there-
fore set a = 0.1, yielding 7., = 200 with approximately 10%

productively infected cells. The data and the model results are
depicted in Fig. 4.

The CD4™ cell count of patient C0021 increases marginally
only, i.e., from 220 at day 0 to 280 at day 28 (Fig. 4a). Pooling
the data of all 20 patients, Schuurman et al. (35) indeed report
a median increase of the CD4" counts of about 15% at 3
weeks. This is very low compared to the data for protease
inhibitors and/or other RT inhibitors (17, 36). In our model
(Fig. 4a), we find a twofold increase in the CD4* counts in
about 2 weeks, which deviates from our own data (35) but is in
agreement with other data on protease (17, 36) and RT (8, 36)
inhibitors.

In the model, the total viral RNA load reaches its minimum
around day 8, peaks again around day 20, and then approaches
a new equilibrium (Fig. 4b). The initial phase during which the
virus load descends corresponds closely to the data (i.e., pa-
tient C0021 and the median counts (35). In the model, the
HIV-1 RNA rebound during week 2 is faster than that in the
data. One has to bear in mind that our model remains an
oversimplification and that a precise fit is not to be expected. A
possible explanation is the absence of long-lived infected cells
from our model (see Discussion).

Figure 4c depicts the fractions of the wild-type, isoleucine,
and valine genotypes. The model matches the data in that both
generate exactly the same evolutionary sequence. The isoleu-
cine and valine mutants appear within 2 weeks. The valine
mutant subsequently outcompetes the isoleucine mutant over a
time period of a few months. For this particular patient, one
could argue that the isoleucine mutant appears and disappears
faster than it does in the model. There is, however, too much
variation between the patients to blame this on the model. For
instance, patient C0021 might have had a higher than expected
initial frequency of the isoleucine mutant (see below). In both
the model and the data, the fraction of GTA valine mutants
always remains small (not shown). Thus, we conclude that
taking the current drug resistance and mutation estimates, we
can account for the correct evolutionary sequence.

Zidovudine. In another recent study, 24 asymptomatic HIV-
1-infected persons were treated with zidovudine (8). Their
average CD4" count was 380 cells per pl. The serum HIV-1
RNA load was measured at 0, 1, 3, 6, and 9 months and at
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FIG. 4. CD4" and HIV-1 RNA levels of a representative patient (i.e.,
C0021) treated with lamivudine and of the model with an effective drug concen-
tration D = 100. The patient data are denoted by symbols connected by straight
lines; the model behavior is denoted by the continuous lines. Setting a = 0.1 per
day, we obtain a CD4 " count in the infected state of T\, = 200. Parameters are
as in Fig. 2, but p; = 107>, u, = 5 X 107°, for the mutant RT fitnesses we

conservatively estimate e, = e,,; = 0.99, and the drug resistances are estimated

to be R;,, = 500 and R,,; = 750. (a) CD4" counts; (b) total HIV-1 RNA, (c)
RNA fractions of the wild-type virus (circles), of the isoleucine mutant (dia-
monds), and of the valine mutant (squares).

approximately 1 and 2 years after treatment. Relative amounts
of HIV-1 RNA containing mutations in RT at positions 41, 70,
and 215 were assessed as described previously (8). The muta-
tions involved in zidovudine resistance are ATG — CTG for
codon 41, AAA — AGA for codon 70, and ACC — TAC for
codon 215. Since the mutations involve different codons, they
can appear in any combination. We thus have seven strains: the
wild-type V,,,, the mutants at positions 41 (i.e., V,;), 70 (i.e.,
Vo), 215 (i.e., V,;5), and the mutants at combinations of 41
with 70 (i.e., V4170), 41 with 215 (i.e., V41515), and 70 with 215
(i.e., V50215)- The drug resistances (ICs,8) of the seven strains
have been estimated: R, = 1, R,; = 4, R,, = 8, Ry;5s = 16,
Ryi70 = 9, Ryyais = 60, and Ryg5,5 = 6 (19, 23).

Using the mutation rates estimated above, we obtain the
mutation matrix

Ko M3 M1 M3 Rafs 0 0
3 Ko pips 0 151 P«% 0
e Bals o 0 g 0 n3
M=| 3 0 0 e 0 [T T
Mals B2 pe 0 0 0
0 B3 0 w0 Bo  Bibs
0 0 P«g 1) 0 Raphs3 Ko

where the rows and columns are ordered as follows: wild type,
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41, 70, 215, 4170, 41215, and 70215. Again, each row gives the
mutation frequencies by which the strain of that row is created
by each of the other strains.

The typical sequence of the three mutations as they appear
in the data is 70 — 215 — 41 (8). Empirically, it is not known
in what specific strains these mutations arise; we know only
what fraction each mutation comprises of the total population.
In our model, the same fractions are defined as p,; = (V,; +
Varzo T Var215)/ZVj, p70 = (Vay + Vigzo + Viizas)ZV), and pys
= (Vais T Vaizis T Vio215)/2V;. Using the parameters on the
drug resistance and the mutation frequencies, we typically find
the same sequence in the model, i.e., p;o — p,1s — p4;- In the
model, we can easily check in what specific strains these mu-
tations appear. Thus, we complement the empirical data with
suggestions on the precise evolutionary order.

The time scale at which the mutations appear largely de-
pends on the effective drug concentration D. Ideally, it would
be preferred to estimate D from the initial slope with which the
virus RNA load declines (see Appendix). Unfortunately, this is
not possible because our first data point at 1 month has missed
the first minimum (which is probably at 2 weeks [24]). We
therefore fit the effective drug concentration such that the time
scale on which the mutants arrive is approximately correct.
This gives D = (0.5, which means that the total fitness of the
wild-type virus becomes f,,, = 1/(1 + D) = 0.67. Because such
a fitness is well above the critical fitness of Fig. 3, we expect the
wild-type virus to rebound.

We again compare the model behavior with the data by
picking one representative patient, i.e., patient 276, whose be-
havior corresponds reasonably well to the median results (8).
This patient has a CD4" count of about 500 T cells per pl; we
therefore set o = 0.03, yielding T, = 500. Simulating the
model with our conservative fitness estimate of e; = 0.99 for all
drug-resistant mutants j, we again find the correct evolutionary
order of the drug-resistant mutants. The 70 mutant, however,
arrives far too early, and the 215 mutants tend to arrive too
late. We therefore adjust the (unknown) fitness parameters
such that ey; = €55 = e470 = 0.95. The other fitnesses all
involve the 215 mutation and are kept at their default value of
99%; i.e., we keep €515 = €41215 = €70215 = 0.99. This indeed
slows down the 70 mutants and speeds up the 215 mutants. The
sensitivity of the model behavior for these fitness parameters
pinpoints the significance of determining them experimentally
(work in progress; see Discussion).

Pooling the data from all cases and plotting median results,
we have demonstrated a significant increase of the CD4 ™ cell
count in the first few months (8). The CD4" data from indi-
vidual patients are very noisy, however (e.g., patient 276 in Fig.
5a). In the model, the CD4™" count peaks at day 60, having
increased by about 30% (Fig. 5a). For an initial CD4" count of
500 cells per pl, this CD4™" increase is in agreement with the
data (17).

Comparing the HIV-1 RNA levels of the model and the data
is difficult because we have missed the true minimum in our
data. The model shows a minimum RNA level at about 3 weeks
after the onset of treatment, which is in agreement with other
recent data (24). Nevertheless, the model behavior is a little
too fast because the total virus RNA rebounds such that we
have a peak at 2 to 3 months. In the data, the HIV-1 RNA
recovery takes longer (Fig. 5b and reference 8). The observa-
tion that the model is somewhat too fast is the same (minor)
discrepancy between model and data that we have discussed
above for the lamivudine data.

The evolutionary sequence in the model and the data are
again in close correspondence (Fig. 5¢). The first drug-resistant
mutant is the codon 70 amino acid change. This mutant is
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FIG. 5. The evolution of drug-resistant mutants to zidovudine for a repre-
sentative patient (i.e., 276) and for the model with D = 0.5. The patient data are
denoted by symbols connected by straight lines; the model behavior is denoted by
the continuous lines. Setting o = 0.03 per day, we obtain a CD4* count in the
infected state of T, = 500. Assuming a higher efficacy for the 215 mutant, we
set the fitness of the six mutant strains to e,; = €59 = €4170 = 0.95 and e,,5 =
€41215 = €70215 = 0.99. The resistance parameters were previously estimated as
Ry =4, Ryg = 8, Ry15 = 16, Ryi70 = 9, Ryyzis = 60, and Rygyy5 = 6 (19, 23).
Other parameters are as in Fig. 4, with the addition of u; = 107°. (a) CD4*
T-cell counts; (b) total HIV-1 RNA; (c) RNA fractions of the 41 mutant (circles),
of the 70 mutant (diamonds), and of the 215 mutant (squares). (d) HIV-1
genotypes at arbitrary concentrations. Heavy solid line, total HIV-1 RNA; heavy
dashed line, wild-type RNA; light solid line, the 70 mutant; dotted line, the 215
mutant; the dash-dotted line, the 41215 mutant.

slowly replaced by the 215 mutation. The latter strain subse-
quently also acquires the codon 41 mutation. The 70 mutation
confers relatively little resistance (i.e., R,, = 8) but is gener-
ated at highest frequency by RT mutations in the wild-type
virus. Thus, we again conclude that the current empirical esti-
mates for the drug resistances and mutation frequencies of the
HIV-1 variants are sufficient for explaining the evolutionary
order observed in the clinical data. The evolutionary rates in
the model are again somewhat too fast.

The clinical data on the fractions of the mutations are com-
plemented with the absolute genotype densities, as suggested
by the model, in Fig. 5d. In the model, the wild-type population
initially decreases but rebounds after about 3 weeks. Thus, the
initial increase of the viral load after 1 month is largely due to
a rebound of the wild-type virus. We have reported similar
behavior in our clinical data (8). In the model, the wild-type
virus increases due to the increased availability of target CD4™"
T cells, which compensates for the antiviral effect of the
zidovudine treatment (see also Fig. 3). Around day 60, the
wild-type virus starts to decline again due to competition with
the 70 mutant, which in the presence of the drug (i.e., for D =
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0.5) has a higher fitness than the wild-type virus. Similar model
behavior has also been reported before (14, 28).

The competition between the wild-type virus and the 70
mutant slows down the development of drug resistance. If we
were to artifically prevent the rebound of the wild-type virus,
the CD4 ™ target cell levels would increase even further, allow-
ing the 70 mutant to develop faster. This was tested in the
model by artificially decreasing the wild-type density during its
rebound phase (not shown). We conclude that ecological com-
petition processes determine the evolutionary time course of
resistance development. Figure 5d shows that the 215 mutant
is slowly replaced by the 41215 strain, which combines the
codon 41 and 215 mutations. Thus, the late rise in the 41
fraction in Fig. 5c is due to the outgrowth of the 41215 com-
bination.

Variation. Although most patients adhere to the typical pic-
ture depicted in Fig. 5, there is wide variation between the
patients (8). The stochasticity of the mutation process is a very
likely source of the variation. In the present model, we have no
stochasticity: mutation is implemented as a continuous pro-
cess. Elsewhere we have illustrated the effect of stochasticity in
the evolutionary time course by altering the initial densities of
the mutants (8).

DISCUSSION

A host-parasite model is an important tool for understand-
ing the complex evolutionary process of the development of
drug resistance. The model qualitatively accounts for the evo-
lutionary sequence of drug-resistant mutants in two clinical
data sets with different RT-inhibiting drugs (8, 35), has the
correct time scales for the changes in the HIV-1 RNA load and
the CD4™ cell counts (17, 36), and has approximately correct
time scales for the appearance of the drug-resistant mutants (8,
35). The results show that (i) the observed time scale differ-
ences between lamivudine and zidovudine can be explained by
a difference in the efficacies of the two drugs, (ii) the precise
evolutionary order of the drug-resistant mutants can be fully
explained by a combination of the current estimates for the
mutation frequencies and for the drug resistances of the mu-
tants, and (iii) the observed rebound of the wild-type HIV-1
RNA load in the zidovudine data can be explained by the lower
efficacy of zidovudine. In the model, there is a critical treat-
ment level below which the wild-type HIV-1 RNA load can
rebound before the appearance of the first drug-resistant mu-
tant. Finally, the model complements our understanding of the
zidovudine data by suggesting which genotypes are responsible
for the codon fractions that we measure.

There are also important differences between the model
behavior and the clinical data, however. First, the increase in
the CD4™" T-cell counts during the first weeks of treatment is
too large in the model. The T-cell growth rate in our model is
determined by the T-cell activation rate . Thus, one could
argue that a simple solution for this discrepancy would be to
select a lower T-cell activation rate. This issue seems to be
more complicated, however. Recent clinical data show that in
patients treated with highly effective combinations of antiret-
rovirus drugs, the CD4" T-cell counts fail to fully recover.
Thus, it seems that at undetectably low viral loads, the CD4*
compartment remains affected. For instance, the destruction of
lymphoid tissue by the HIV infection could decrease the equi-
librium CD4* cell count (13), i.e., could decrease the T,
parameter of our model (7). Such an effect would put a real-
istic limit to the recovery of the CD4™ levels in our model.
Second, a large-scale clinical study on the effects of lamivudine
and zidovudine (10) reports a sustained 0.5- to 1-log decrease
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in the viral load after a year of treatment. This is a surprising
finding because by the evolution of drug resistance, one ex-
pects hardly any effects of these drugs after a year of treatment.
The only explanation seems that the drug-resistant mutants
have a much lower fitness than we have assumed. We have
seen in Fig. 3, however, that in our model, the equilibrium viral
load is almost a step function of the total fitness. Thus, in our
model, a 0.5- to 1-log change in the equilibrium viral load
cannot be realistically attributed to a change in the total fitness.

With respect to the parameter values, the fitness values e; in
the absence of the drug remain the most important unknowns.
Recent in vivo estimates for zidovudine-resistant mutants sug-
gest that in the absence of zidovudine, the fitness differences
between mutants may be considerable, i.e., 10 to 40% (16). For
lamivudine, only preliminary in vitro estimates are available.
Estimating these fitness values in vitro is extremely difficult
because the estimates depend strongly on the type of target cell
used in the assay (1). In some of the cell lines, however, it also
seems that in the absence of lamivudine, the fitness of the
valine mutant in the lamivudine study is considerably higher
than that of the isoleucine mutant (1, 30a). Thus, our conser-
vative estimate of making the fitness of all mutants 99% of that
of the wild type need not be realistic. However, in our model,
the total fitness is the product of drug resistance and the fitness
of the absence of the drug (equation 4). Thus, if the fitness of
the valine mutant were indeed higher than that of the isoleu-
cine mutant in the lamivudine study (1, 30a), i.e., if e, > €50,
we would obtain similar results in our model when we give the
two mutants similar drug resistances, i.e., set R,,; = R;..

An obvious extension of our model would be to allow for a
small subpopulation of long-lived productively infected cells.
This could significantly alter the evolutionary dynamics be-
cause early strains will linger much longer. This could explain
why in our model the drug-resistant mutants appear a little too
fast and the wild-type virus disappears too early. The distinc-
tion between quiescent and activated CD4™ T cells in our
model is not required for explaining our data. This feature of
our model, however, allows us to model disease progression by
an increase in the general T-cell activation rate, which is in
agreement with current ideas (12) and which yields the realistic
progression scheme of a slowly increasing HIV-1 RNA load
with concomitant slow decrease of the CD4" T-cell count (7).
This behavior is otherwise difficult to obtain with host-parasite
models.

In our model, we have ignored variations in the antiviral
immune response by keeping the turnover of productively in-
fected cells constant. As a consequence, the HIV infection in
our model is target cell limited (6, 7). The same is true for the
previous models for the evolution of drug resistance to RT
inhibitors (14, 28). One can, however, account for the same
clinical data with immune-control models in which the level of
the immune response changes rapidly to the changes in the
viral load that are induced by the antiretrovirus treatments (7).

In summary, with our mathematical model, we have been
able to increase our understanding of the evolutionary dynam-
ics of HIV-1 drug resistance. Armed with these insights, one
can test our assumptions, study alternative models, and try to
fill in the unknown parameters.

APPENDIX

Right after the administration of the RT inhibitors, the viral RNA
load drops. In the data (8, 35) and in the model, this decline is
approximately linear on a log scale. The slope of this decline can be
used to estimate the effective drug concentration D. The maximum
slope is determined by the turnover rate 3, of productively infected
cells. This turnover rate was previously estimated by assuming that the
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drug is 100% effective (17, 36). This assumption of an almost 100%
effective drug concentration is probably reasonable for the protease
inhibitors (17, 36) and for lamivudine (35) but is definitely incorrect for
zidovudine (8). Thus, we here estimate the relationship between the
predicted slope 6 and the effective drug concentration D.

Since the level of drug-resistant mutants is low at the onset of
treatment, we ignore them and consider the wild-type virus only. This
simplifies equation 3 to

dl, _ BuoT
e IW‘<1 +p ¥ (A1)

where we have substituted V,, = I,,. This nonlinear equation can be solved for
the time period during which virus declines when we make the approximation
that the target cell level T remains constant or changes only slowly. Given this
approximation, the slope is

_ BrT(0)

0=, "% (A2)

where 7(0) is the number of activated cells at day 0. We can easily check that if
the drug is 100% effective, i.e., if D — =, the slope is given by the turnover rate
of productively infected cells, i.e., 6 = =3, (17, 36).

We have modeled the lamivudine data and the protease inhibitor data by
setting the effective drug concentration to an arbitrary large value, i.e., D = 100.
The effective drug concentration can be evaluated in terms of the fitness of the
wild-type virus, i.e., by 1/(1 + D), which for D = 100 is approximately zero.
Hence D = 100 is approximately 100% effective. We can check the predicted
slope for a CD4™" count of approximately 200 cells [i.e., for a target cell level 7(0)
= 11] by evaluating equation A2,

~0.05 X 095 x 11

_ ~ -3 _ - _
T 05 =5x 10 0.5 05 (A3)

which also shows that for D = 100, the slope is approximately —&,, irrespective
of the number of activated CD4™ cells in the range of interest.

Although the slopes with which the virus RNA levels decline in the zidovudine
data cannot be estimated because our first data point at 1 month is 2 weeks later
than the true minimum (24), it is clear that patients treated with zidovudine
typically have much smaller slopes. Zidovudine is less effective than lamivudine
or ritonavir. Thus, in terms of the total fitness of the wild-type virus, we can no
longer approximate 1/(1 + D) = 0, which means that we precisely have to know
the effective drug concentration. In fact, if earlier samples of the RNA load were
available, one could use equation A2 to estimate the effective drug concentration
D from the initial slope at which viral RNA declines if all other parameters are
known.
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