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We develop a model for the idiotypic interaction between two B cell clones. This model takes into
account B cell proliferation, B cell maturation. antibody production, the formation and
subsequent elimination of antibody-antibody complexes and recirculation of antibodies
between the spleen and the blood. Here we investigate. by means of stability and bifurcation
analysis. how each of the processes influences the model’s behavior. After appropriate non-
dimensionalization. the model consists of eight ordinary differential equations and a number of
parameters. We estimate the parameters from experimental sources. Using a coordinate system
that exploits the pairwise symmetry of the interactions between two clones. we analyse two
simplified forms of the model and obtain bifurcation diagrams showing how their five
equilibrium states are related. We show that the so-called immune states lose stability if B cell
and antibody concentrations change on different time scales. Additionally. we derive the
structure of stable and unstable manifolds of saddle-type equilibria. pinpoint their (global)
bifurcations and show that these bifurcations play a crucial role in determining the parameter
regimes in which the model exhibits oscillatory behavior.

1. Introduction. Jerne (1974) postulated that the immune system functions as
a network based upon idiotypic interactions among antibodies, B cells and T
cells. In order to evaluate the role of network interactions in the operation of
the immune system a number of models have been developed (see Perelson.
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1988, 1989: Varela and Coutinho 1991. and De Boer ez al.. 1992a for recent
reviews). In this study we formulate a series of increasingly realistic models of
the smallest B cell network possible. that is. one that only involves interactions
between an idiotype and its anti-idiotype.

The main motivation for undertaking this study is that in previous work by
De Boer and Hogeweg (1989b). De Boer et al. (1990). Perelson (1989) and
Stewart and Varela (1989, 1990) fluctuations were found to be the predominant
mode of dynamical behavior in network models that take into account both B
cells and antibody. The fluctuations were either truly periodic or chaotic.
Although the models had multiple steady states. for the parameter values
thought to characterize immune networks these steady states were not stable.
Analysis of the dynamic behavior in these models indicated that the
fluctuations were due to the existence of two time scales. one determined by the
B cell lifetime and the other by the antibody lifetime in the serum. Experimental
data suggest that idiotype concentrations may indeed fluctuate periodically or
chaotically on a time scale of two cycles per month (Lundkvist et al.. 1989:
Varela et al.. 1991).

These results cast doubt on our earlier work (De Boer. 1988: De Boer and
Hogeweg. 1989a: Weisbuch et al., 1990). as well as that of others (cf. Hoffmann.
1975: Richter. 1975, 1978: Segel and Perelson. 1988) studyving somewhat
simplified models lacking the distinction between B cells and antibody. The
behavior of these simplified models is dominated by a number of stable steady
states. The presence of multiple attractors allowed us to interpret the model’s
behavior in terms of “virgin™, “immune™ and “suppressed™ states. By switching
from a virgin state. in which the B cells are inactive. to an immune state the
models can account for the phenomenon of immunological memory.
Furthermore. the existence of suppressed states could account for the
phenomenon of immunological tolerance. This explanation of immunity and
tolerance seems to be absent from models exhibiting large sustained
oscillations in cell population sizes.

This paper will reconsider the question of whether the predominant mode of
behavior of an immune system regulated by idiotypic network interactions is
expected to be chaotic/oscillatory or stationary. In order to make the model
realistic we consider two additional processes, and hence two new time scales.
First, we incorporate a maturation period to account for the time-lag involved
in B cell differentiation. We implement this as the “gearing up” process
introduced by Segel and Perelson (1989). Second, as in Perelson and Weisbuch
(1992) we examine a two-compartment model of the immune system. Note that
these two complications are not required for the apparently chaotic behavior of
the model. but do change the parameter regimes in which such behavior is
observed.

The gearing up process models the time-dependent aspects of antibody
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production. This involves a time lag associated with the differentiation of small
stimulated B cells to the large lymphocyte and plasma cell states that are
characteristic of antibody secreting cells. The time scale of such a gearing up
process is of the order of several days. Using the method of Segel and Perelson
(1989) we construct a first-order differential equation to describe gearing up.
Other authors. e.g. Dibrov et al. (1977) and Fowler (1981). explicitly introduce
a time delay t such that the antibody production at time ¢ depends on the B cell
population, and its degree of stimulation, at a time 1 — t in the past. The slow
time scale that is introduced by incorporating the gearing up process will be
shown to be destabilizing for the steady states.

Splitting the model into two compartments composed of the spleen and the
bloodstream introduces a new time scale. the antibody residence time in the
spleen (Perelson and Weisbuch, 1992). The spleen seems to be one of the
primary lymphoid organs involved in idiotypic network interactions. Evidence
for this includes the fact that animals raised in a germ-free environment have
atrophic lymph nodes and are depleted of lymphocytes. whereas the spleen has
roughly the same percentage of activated lymphocytes as in conventionally
reared animals (Hooijkaas er al.. 1984; Pereira et al.. 1986). This activity is
thought to be due to idiotypic interactions among components of the immune
system. In the two-compartment model presented below. the residence time in
the spleen becomes the most relevant time scale for the lifetime of antibody.
Our calculations confirm the results of Perelson and Weisbuch (1992) that both
long and short residence times in the spleen have destabilizing effects. and that
stable equilibria are found for intermediate values of this residence time.

Responses to foreign antigens generally occur in lymph nodes. Thus. in
modeling responses to foreign antigens one should include the set of lymph
nodes as a compartment. Formally. the compartment model we introduce for
the spleen can be used to model interactions in lvmph nodes. Parameters such
as the volume and flow rate (or. in general, the residence time distribution)
would. however. have to be chosen differently.

2. The Two Compartment AB Model with Gearing Up. We have previously
developed and studied a series of models for idiotypic B cell activation (De Boer
et al.. 1990). The models differ in the specification of the activation process. In
the simplest model we only consider B cells and ignore the fact that activation
involves antibody molecules. In the “intermediate models™ we incorporate
antibodies but use a phenomenological description of the activation process
involving antibody cross-linking. In our most detailed models we have
considered the chemical reactions involved in receptor binding and cross-
linking. We have called these models the B models (for B cell). the AB models
(for antibody B cell) and the ABC models (for antibody B cell chemistry).
respectively. In this paper we develop a more complete version of the AB
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model. called the CABG model (for compartmental AB model with gearing
up). which incorporates the time-lag involved in B cell differentiation and
which distinguishes between a spleen compartment and a peripheral compart-
ment. For reasons of simplicity and better understanding of the results. we will
also study our previous models, which we here call the B model and the basic
AB model.

In the CABG model we consider B cells localized in the spleen. These cells
may become activated by interacting with an anti-idiotypic antibody. upon
which they proliferate and differentiate into antibody secreting cells. This
maturation process takes a few days. The free antibody. produced by
differentiated activated B cells, activates anti-idiotypic B cells. leaves the spleen
compartment due to fluid flow through the organ and reacts chemically with
anti-idiotypic antibodies in either the spleen or the circulation to form
complexes. These complexes, which are analogous to antigen-antibody
complexes, are known to be removed from the system. for example by
phagocytic cells such as macrophages. The rate of complex removal will turn
out to be one of the crucial parameters of the model.

The CABG model, as well as some simplified versions of the model that we
study. 1s derived from a combination of several previous models. We use the log
bell-shaped activation function (see Fig. 1) that has been proposed as a
phenomenological equation for the cross-linking process (Perelson and
DeLisi. 1980; De Boer, 1988: De Boer et al.. 1990: Weisbuch er al.. 1990; De
Boer and Perelson, 1991). The AB models make a distinction between B cells
and the antibody along the lines of several earlier models (Varela et al.. 1988:
De Boer and Hogeweg. 1989b; De Boer et al.. 1990: Perelson, 1989; De Boer
and Perelson. 1991). The models incorporate the gearing up function proposed
by Segel and Perelson (1989). The two-compartment model of the immune
system. one compartment being the spleen and the other the bloodstream and
fluids in which antibodies reside. is the one proposed by Perelson and
Weisbuch (1992). For a more detailed explanation of these models we refer to
these earlier publications.

We assume that all of the B cells of interest are localized in the spleen.
whereas the antibody secreted by these cells enters the bloodstream. As a first
approximation. we will treat both compartments as well-stirred and allow fluid
flow at a rate g between compartments. For the spleen. which is a rather solid
organ. this approximation need not be correct and is used for reasons of
simplification. Because B cells generally need to interact with helper T cells and
antigen presenting cells. both of which are present in high concentrations in the
spleen, we feel that localizing the responding B cells to the spleen is more
realistic than having B cells in both compartments. Let ¥, be the volume
available to antibodies in the spleen, let ¥, be the available volume in the
periphery. i.e. outside of the spleen, and let v = I/ 7 be the volume ratio. Thus,
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a

Figure 1. Graph of the bell-shaped proliferation function. f(a). given by

Equation (1) vs the field a. Equilibria involving proliferation. i.e. the immune and

suppressed state. are located close the intersections of f(a) with the line v =1 p (see
text).

if ¢ is expressed as a volume flow rate with units of volume time, the average
residence time of a molecule in the spleenis r =} ¢. while the average residence
time outside the organis I g=1v.

In the AB models we use a phenomenological bell-shaped activation
function:

N o ”'-
fa)=——- (1)

0,+abl,+a’
where 0,0, see Fig. 1. The use of a bell-shaped activation function can be
justified on the basis of empirical dose-response curves for antibody
production (cf. Celada, 1971) or on the basis of a more microscopic theory in
which one assumes that activation is proportional to the fraction of cell surface
immunoglobulin receptors cross-linked (cf. Perelson. 1984). We assume that B
cell proliferation is governed by the same activation function. Segel and
Perelson (1991) show that on the time scale of interest in immunological
processes. hours to days. the chemical reactions involved in receptor binding
and cross-linking can be considered to be fast and the ABC model can formally
be approximated by the basic AB model under conditions where the amount of
antibody per B cell is large so that antibody depletion due to cell binding can be
ignored.
The function f (a) is composed of two factors. The first factor increases from0
to 1. reaching its half-maximal value at 6, . the second factor decreases from 1 to
0. reaching its half-maximal value at #,. For 0,>6,, the maximum
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0,/(y 0,4+ 0, is approximately one. This maximum is attained at
a=./0,0,.

We write for the two B cell populations inside the spleen:

di

d:’ =m+b,(pfla,)—dy). (2a)
db, ;

dr‘=m+b:(pflu}l—~dﬂl. (2b)

Here m is a source term corresponding to the generation of new B cells in the

bone marrow that then make their way to the spleen. B cells have a finite

lifespan: dy is the per capita death rate of B cells. The per capita rate of

proliferation of stimulated B cells is p. The function f{a) multiplying p can be

viewed as representing the fraction of B cells stimulated to proliferate.

Alternatively. one can take the view that all cells proliferate at the rate pf(a).
The change in antibody concentrations in the spleen 1s described by:

da : g :

ﬁ =5G,b, —d a, —d.r*Ka,a, —(a, —d, ). (3a)

da, . . )

c; 2 =5G,b,—da,—dr*Kaa, —a,—a,)/t. (3b)
t

B cells when stimulated by anti-idiotypic antibody are assumed to secrete
antibodies at a per capita rate sG(t). where s1s a parameter and G(1) the gearing
up variable. We have assumed the rate at which antibodies are produced is a
function of time so as to model the differentiation of small B cells into antibody
secreting cells. Antibody has a natural rate of turnover d,. Antibody can also
be eliminated by binding to anti-idiotypic antibody to form a complex. C.
which is then assumed to be eliminated (by macrophages and other phagocytic
cells) at a rate d .. Because complex formation is a chemical process that should
occur on a time-scale of seconds to minutes, we have assumed that the
concentration of the complex is that at chemical equilibrium. Thus, we assume
C=rt?Ka,a,, where v is the valence of the antibody and K is the affinity of the
idiotype for anti-idiotypic antibodies.

The last term, —(a, —a,) t. takes into account the loss of antibodies from
the spleen and the supply of antibodies from the blood. If the concentration of
antibody in the spleen is a, and fluid leaves the spleen at a volume flow rate q.
then ga, moles of antibody leave the spleen per unit time. The inverse residence
timeis t~ ' =¢q V.. where V_is the spleen volume. The loss of antibody per unit
time from a volume V, then reduces the antibody concentration at a rate
—gqa, 'V,=—a, t. Similarly. when antibody at a concentration 4, in the
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blood enters the spleen via fluid flow at rate q. it increases the concentration of
antibody in the spleen at rate ga, 1.

The change in the antibody concentrations outside the spleen is described
by:

d(i . . T,
L =v(a,—a,)t—da,—d’Ka,a,. (da)
dr )
da, . ) Sigpn
E: =v{d,—d,) T— :!,\ug - u"(-I'“[\(Ilu: ; (4b)

Because the external compartment has volume 1. the antibody concentra-
tions d,. i= 1. 2. change at the rate ga; V= va, v due to inflow from the spleen
and at the rate —qa, V, via outflow from this compartment. The other two
terms account for the spontaneous decay of antibodies and for their loss via
complex formation. respectively.

The rate of production of antibodies by B cells is dependent upon the gearing

up process:

dG
d—rlz;ﬂflu:l—(?] ) (5a)
dd—(::-:gl_f'lail—(}zl, (5b)

We introduce a separate gearing up function for each clone so that G;(t) can be
interpreted as the proportion of antibody-producing B cells of type i.
Following Segel and Perelson (1989). we construct G,(t) as the solution of the
first-order differential equation (5). where g is a constant that determines the
characteristic time for gearing up. At =0 we set G,(0)=0 so that there is no
initial secretion. When a clone. say clone 1. becomes activated. f(a, ) increases
from 0 to a positive value and G, (1) increases. If a, were constant, G, (1) would
increase towards G, =f(a,). However.asa, changes in time G, (t) follows with a
lag. Formally. G,(t)=ge ¥ I6 fla,(r))e?dt .

3. Parameter Estimates. First we estimate the volumes of the two compart-
ments. In humans the spleen is approximately 0.5% of the total body weight
(Weiss. 1972). For a 70 kg human a normal spleen would therefore be 350 g.
Assuming the density of tissues to be 1 g ml. this corresponds to 350 ml. Only a
minor pa"rt of this will be extracellular fluid. however. We estimate this to be
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% or 3.5 ml. The amount of blood is estimated to be 75 ml per kg of body
weight (Strand. 1978). For a 70 kg human this amounts to a total blood volume
of 5250 ml. This. however. consists of both cells and plasma fluid. The plasma
volume is about 44 ml per kg of body weight (Strand. 1978). The total volume
of plasma in a 70 kg body is. therefore, estimated to be 3080 ml. Thus. the ratio
of the two volumes v=3.5/3080~ 10 *. Some antibody could also leak out of
the circulation into the tissue spaces but that generally only happens at sites of
inflammation, and hence should not significantly change our rough estimate
of v.

A lower limit for the residence time of fluid in the spleen can be estimated
from the rate at which blood flows through the organ. The total daily human
cardiac output is about 6.0 1'min or 8640 | day (Landis and Pappenheimer.
1962). Approximately 3% of this, i.e. 2.6 x 10° ml day. goes through the spleen
(Pabst. 1988). The average residence time, t, of fluid in the spleen should
therefore be 3.5ml/2.6 x 10° ml/day=1.35x 10 °day (or approximately
| sec). Thus. an upper limit for the rate at which antibody leaves the spleen. 1, 7.
is 7.4 x 10* day ~'. The actual rate is probably considerably lower. Before
entering the blood stream antibodies must move through the tissue and lymph.
where they have the opportunity to bind Fe receptors on cells. The binding to
cells will substantially slow the movement of antibodies from their site of
production to the blood. We know of no direct measurements of antibody
residence times. There is no direct connection between the splenic artery and
vein. However, the average residence time of cells brought into the spleen is
thought to be several hours (Sprent, 1989).

Antibody concentrations are typically measured in pg'ml. One fully
activated B cell can produce 10* molecules per sec. Per day. 1.e. per 86.400 sec,
this corresponds to 8.64 x 10%/6 x 10** =1.44 x 10~ ' moles cell day. Using a
molecular weight of 900.000 for IgM this is 1.44x 107" x9x 10°=1.3 x
107 g/cell 'day. To transform this into a concentration we must multiply by
the concentration of antibody producing cells. Here we shall measure B
concentration in units of cells per spleen and hence we shall normalize the
secretion rate by the volume of the spleen. i.e. the volume in which the
antibodies are diluted. In pg per 3.5 ml volume of the spleen the rate of
antibody production per cell per unit volume is s=13x10""3 ug
cell/day/3.5ml=3.7 x 10™* ug cell'day ml.

A high affinity IgM interaction maximally corresponds to an equilibrium
constant K=10°1'mol. For a molecular weight of 900,000 this translates
into 10°/900,000~11g or K=10"* ml ug. For IgM antibody the valence is
r=10. Antibodies are typically long-lived. Due to the lack of data we have
to make a quite arbitrary choice. We assume thatin the absence of clearance
by complex formation, antibodies live 10 times longer than B cells. This
corresponds to a lifetime of 20 days. ie. to d,=0.05per day. Con-
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versely. we assume that antibody complexes are quickly removed. Davies et
al. (1990) studied the formation and clearance of immune complexes and
showed that in their system the half-life is of the order 10 min. We opted for
a somewhat longer half-life. Modeling clearance of antibody-antibody
complexes as a first-order process we choose d.= 10 per day. i.e. a lifetime of
the order 2 hr.

In our model we assume that all idiotypically activated B cells reside in
the spleen. The bone marrow produces 10'* B cells per day. Because of cell
division at the pre-B cell stage. we estimate that each clone will be
approximately 10 cells. (Thus the 10" cells per day would correspond to
roughly 10'" different specificities.) Since most cells that leave the bone
marrow home to the spleen. this corresponds to m= 10 cells per day for the
entire spleen. If multiple clones express the idiotype then m would be higher
(see Discussion). B cells have a lifetime of 1-2 days: dy=0.5 per day. In the
absence of stimulation. f(a)=0. we will have m d =20 B cells per spleen per
specificity. Further. stimulated B cells divide about every 16hr. ie.
p=1 per day. The gearing up parameter. g=0.2 per day. sets a time scale of
antibody production of about 5 days.

In an attempt to estimate 0, and f, we use previous results showing that
the maximum of the cross-linking curve is located around (¢K) ™ '. where ¢ is
the valence of the antibody. For bivalent antibodies the maximum is exactly
at (tK)~ ' (Perelson and DeLisi. 1980). whereas for higher valence antibodies
it is displaced somewhat to lower values (Perelson. 1981). For IgM
antibodies. ie. r=10. with an affinity K=10"7 ml ug. maximum cross-
linking is expected at an IgM concentration of 100 ug ml (1.e. approximately
10~ % mol 1). The lower threshold. #,. should be at least one and possibly
several orders of magnitude lower than this. e.g. #/; =10 ug'ml. The upper
threshold. @, . should be one to several orders of magnitude higher than this.
e.g. 0,=10% pug ml.

4. Nondimensional CABG Model. We non-dimensionalize the CABG
model by choosing a time scale based upon B cell lifetime. i.e. T=1dy.
Further. let % be the typical concentration of antibody that gives rise to
maximal cross-linking. i.e. z=(vK) '. Then. let f§ be the B cell population
that. when fully activated. can produced a steady-state antibody concentra-
tion of xugml. Since, under these conditions, d4/di=sf—d, x=0. we
obtain a dimensionless scaling factor f=xd, 's. We have seen above that
2~ 100 ug/ml and hence, f~1.35x 10*. Further, let 6 be the half width of
the activation function when plotted vs the logarithm of the antibody
concentration. Since the activation curve is symmetric around its maximum
4=1. where A=a/z. when plotted on a logarithmic scale, #=60,/2 and
§~'=0, = Then the model simplifies into:
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_ A 0
(A)=—=———,
J4) 0 '+A40+4 (©)
o +B,(pf(4,)—1) 7
—= HilAd.)— . <
dT 1P/ 142 L
dB, .
af:a+lep_,"l.~!,}—]l. (7b)
d4, . : .
d—Tl=neBIG,—.-iil—;x.-11.43—/.(.-1,—,-1[1. (8a)
'T2:{5(32(;:—.4:;—;1.4,.4:—;.:.41—‘4'3|. (8b)
d4, . PR -
=== vild,—A)—d04, —pA A,. (9a)
O, i, — T Bl 9%
=vi(d,—A,)—0Ad,—pAA,.
a7 /. 5 B 0A,— A A, ( )
dG, : .
d_f:'"'“’{”_(” ). (10a)
dG, .
2=2(f(4,)—G,).
57 = /(41)=G) (10b)

where A,=a;/x. A.=d, /2. B=b . 6=d,dy. c=mrKs/(d\dy). p=pdy.
p=vdc/dg, 7.=1/(tdg). y=g/dg. x=(tK)~ L p=d, (stK).

Based upon the parameter values derived above. we estimate =10, 0=0.1.
6=148x 1073, p=2, u=200, v=10"7 7<1.5% 10° and y=0.4. Note that
changing the affinity K of the idiotypic interaction only affects ¢ and the scales
used to measure antibody and B cells. Thus. for 6=0. the model behavior
becomes independent of affinity.

The CABG model. Equations (6)-(10). consists of eight differential
equations and contains eight non-dimensional parameters. In order to
understand the behavior of the model we will first examine two simpler models
derived from the full model by letting certain parameters approach either zero
or infinity. Further. we will exploit the inherent symmetry of the model with
respect to clones 1 and 2 by using a new coordinate system. In this paper we
describe the basic properties of the steady states and the dynamic behavior of
the simplified models. In a second paper (De Boer et al., 1993), Part 11, we will
build on the results obtained here and study the detailed behavior of the full

model.
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5. The Basic AB Model. We have previously studied. via numerical methods.
a simplified version of the CABG model with four equations and five
parameters. which we now call the basic AB model (De Boer et al.. 1990). Here
as a first step in the analysis of the full eight equation CABG model. we return
to this model. The CABG model can be reduced to this basic AB model by
setting /=0 and ;— 7 . and choosing A, (0)= A4,(0)=0. This means that there
is effectively only one compartment. i.e. the spleen. and no gearing up is
required for antibody production. For these parameter values A, (N=A,(t)=
0. Further. G,—f(4,)and G,—f(A,). Thus. the basic AB model is composed of
Equation (6) for f(A4). Equation (7a). (b) for B, and B,. and

dA : ;
d—Ti-:mB,_u.-:ll—.-:,}—;;.41.-:_,_. (11a)

d4, .
dT‘=o(.5’3_f(.‘!,I—,v!_,l—,uA,.-!:. (11b)

In order to pinpoint the symmetry of this model more closely. we define
another coordinate system. First, since the populations expand several orders
of magnitude we change to logarithmic variables b*=InB. a*=InA4. In
logarithmic coordinates we obtain for the B cells:

dh* T "
-ﬁ:ac'*%;gf(e"-‘l—l. (12a)
h* . .
‘;f—ae-*:ﬂ;ucd:;—L (12b)
and for the antibodies:
* - - - -
%}1— =0(f(e®)e? " —1)— pe™. (13a)
da* : ’
H_ou'le"le 42— | )— pe, (13b)
where
e’ f

fle?)= (14)

0 '4+e*O+e*

Second we define a new coordinate system. which we call the symmetric
logarithmic (SL) coordinate system. The SL coordinate system exploits the
symmetry of the model and w ill prove to be advantageous for making Poincare
sections. Thus. we define b,=b% —b%.a,=a} —a3. ie. the difference between
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the log concentrations (and hence. the log of the quotient of the concentra-
tions), and b = b* + b* and a_=a*+a%. i.e. the sum of the log concentrations
(and hence. the log of the product of the concentrations). Thus. b, =0 whenever
b* =b* and a, =0 whenever af =a¥. In the SL coordinate system we obtain for
the B cells:

db . ’ 5 - )
d—}f_:a(e""—e‘“]—pt_!le"‘l—_r|e"ﬂn. (15a)
dh-‘:me‘*’?+e““5|+;nf'(e"?l-u'le“?n—’- (15b)
dT . ' i N
and for the antibodies:
da T . .
dl_;-=‘)[,”ed"|ﬂh'_"'—_Ht‘,d'Ichl_u:}—;{{e”:—c'”l. (16a)
da e e s e e s :
d{f: S(f(e®)eb ~ M +f (e )e’2 71 —2) — p(e® +€%), (16b)

where b¥*=(h,+b,)2 and b3 =(b,—by) 2. and af =(a,+a,) 2 and af =(a .~
udl 22

6. The B Model. We have previously proposed an even simpler model (De
Boer. 1988: De Boer and Hogeweg. 1989a; De Boer et al.. 1990: Weisbuch er
al.. 1990). We now call this model the B model (for B cell model). Although the
B model does not make a distinction between antibody and B cells, the steady
states of the B model are very similar to those of the AB models. The B model
has the advantage in that its steady states can be obtained analytically and their
stability is easily analysed. Understanding AB models is greatly facilitated by
examining the steady states of the B model.

The B model has a similar log bell-shaped activation function:
b 0,

(b)=— ——.
f(b) 0,+b60,+b (17)

and very similar B cell equations:
db ;
5 =M+ bi@f(by)—dy). (18a)

-

db )
; =m+b,(pf(b,)—dy). (18b)

Thus. in the B model we ignore antibodies and assume that B cells activate each
other according to the phenomenological activation function f(b).
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We nondimensionalize the B model by a procedure similar to the one we
used above for the AB model. ie. we let T=td, and we scale Bcells by
f=./0,0,.the maximum of f(h). We obtain:

f(B)= i 4 19
0 T+BO+B e

dB

dB

where B =bh, . c=m (fdy) and p=p dy. In our previous work we analysed
this model for m=1 cell per day. p=1 per day. dy=0.5 per day. 6, = 10° cells
and 0,=10* cells. Using these parameter values we find fi= 10‘ =0.002,
p=2 and 0=10. For these parameters this model has three stable and two
unstable equilibria (see Fig. 2a).

We also define the B model in the symmetric logarithmic (SL) coordinate
system by changing to logarithmic variables. b*=In B. le.

dh* . g
-d—}‘_=ce'”'+ggfieh:l—|- (21a)
db* C
a?=ae'”=+,;_rle*=l—1. (21b)

and then defining b, =b¥ —b%¥ and b, = b+ b%. In this coordinate system the B
model becomes:

dby -k - b abtY _ f(abl
—d—g(e e P —p(feb ) —f(e")). (22a)
aT . g
d} . - _ - = - : -
s _ gle =t +e )+ p(f (e ) +f(et))— 2. (22b)

where b¥ = (by+b.) 2 and b3 =(b,—by) 2 . The activation function becomes:

el f
= 2 23
JE) =T Fpre 1<3)

7. Classification of Steady States. In our previous work we established that
the B and basic AB models have similar steady states (De Boer. 1988: De Boer
and Hogeweg, 1989a: De Boer et al.. 1990; Weisbuch et al.. 1990: Perelson and
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Figure 2. Trajectories. nullclines and steady states of the B model in the original and
in the SL coordinate system. The heavy lines are the B, =0and b, =0 nullclines. the
light lines are the B}, =0 and b,=0 nullclines. The boxes (Z ) denote equilibria:
black means stable. open means unstable. Parameters: #=10. p=2. c=0.002.
Panels (a). (c) and (e} are in the old coordinate system B, and B,. Panels (b). (d) and
(f) are in the SL coordinate system b, and b_. (a) and (b) Nullchnes (lines) and
trajectories (dots). (c) and (d) Nullclines and steady states. (e)and (f) Nullclines and
steady states for ¢=0. The numerical methods for obtaining the figures are
discussed in the appendix of the companion paper.
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Weisbuch. 1992). First. there exist steady states that we call virgin states. A
virgin state 1s symmetric. i.e. b, =h, or hy=0. In a virgin state the system may
be considered to be at rest: B cell populations and or antibody populations are
small. too small to be able to evoke any significant proliferation. In terms of the
model equations this means that f(-)x0. and hence that b, xm dy. 1.e. B xa.
and that b =21n ¢ and by=0.

Second we have described four activated steady states in which B cell
populations are enlarged by proliferation. and for the AB models antibodies
are being produced. In the activated states the contribution of the B cell source
from the bone marrow. ¢. is typically negligible because B cells are being
renewed by continuous proliferation. In terms of the B cell Equations (7)
and ‘or (20). and Fig. 1. such a proliferative equilibrium is reached when
fthy~1/p. where the field, h. is either A, [in Equation (7)] or B [in
Equation (19)]+. Because the maximal rate of B cell proliferation must be
greater than the rate of B cell death to obtain clonal expansion during an
immune response. we assume that p > 1. Further. since f(h) is a hump shaped
function with 0<f(h)<1 we typically find two equilibria for two different
values of h. The first equilibrium. the immune state. corresponds to hx 0~ '. To
see this. note that for h~ 0 ' <0 the second factor in f(h). 0 (#4+h)x 1. Thus.
the bell-shaped function can be approximated by the first factor and we obtain:

} 1 |
flhy= - '~ henceh=x -

B . . 24
8- '+h »p Op—1) (=a)

The state is called “immune™ because the cells are proliferating and because
increasing the degree of stimulation. h. will increase the rate of proliferation
(Fig. 1).

The second equilibrium. the suppressed state, corresponds to hx ). For
h~0> 0 !thefirstfactorisf(h).h (8~ ' +h)x 1. Thus, the bell-shaped function
can be approximated by the second factor and we obtain:

f
f{hlzzmx’%.hence hx0(p—1). (24b)
Although the cells are proliferating. we call this a suppressed state because
increasing the degree of stimulation. h. decreases the rate of proliferation
(Fig. 1). For p x 2 the two solutions. Equations (24a)and (b), reducetohx~ 0"
and hx0. respectively. This provides the equilibrium values of B, in the
B model and of A4, in the basic AB model.

Since in equilibrium G, =/ (a,) we derive for both the CABG model and basic
AB model the equilibrium values of B, by solving Equations (11a) and (b):

B fld,)—A,)—uA4,=0. (25a)

+ For small positive values of ¢ the steady state is obtained when fih) 1s somewhat less than [ p
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0By f(A,)—A,)—pd,4,=0. (25b)

By Equations (24a) and (b). f(A4,)=f(A4,)> 1 p. in the activated equilibria.
We thus obtain:

% ( .
B,:p.4;(1+‘—_.41) (26a)
. &
and
d u .
B,=pA,[1+=A4,). (26b)
2 2 . d 1'

where 4, and A, are given by Equations (24a) and (b). For =0 in the
activated equilibria B, =pA, and B,=pA,.i.e. B and A4, are proportional to
cach other. When B, and A4, are proportional they need not be treated
separately and our simplest B model would be sufficient. However, since we
generally have u#0. B cell and antibody populations are not proportional (see
also De Boer and Perelson, 1991). A more thorough analysis of the steady
states in the B and basic AB models will be given in Sections 8 and 9. Our goal
here was simply to characterize them as virgin. immune or suppressed.

Since we have an immune and a suppressed equilibrium for each of the two
clones we typically have four activated equilibria. In the activated equilibria
clones proliferate and contain more cells than clones in the virgin state B, >~ o.
Clones in the virgin state are, therefore. called "L for low. and clones in an
activated state are either “M" for moderate (i.e. for ') or "H™ for high (i.e. for
¢). The model has two asymmetric equilibria in which one clone is immune and
the other is suppressed (see Figs 2and 3). Here one clone is “high™and the other
is “moderate”. We call these states "HM" and “MH". These asymmetric states
have also been called “immune” states since the clone that is high can respond
to antigen very efficiently. Further. in B models such immune states can be
obtained by perturbing the virgin state with an antigen (cf. Weisbuch er al..
1990). We shall also refer to these asymmetric states as immune states when no
confusion with the state of a single clone will arise. Note that in an asymmetric
equilibrium the high clone has a moderate field. i.e. is immune. and that the
moderate clone has a high field. i.e. is suppressed. The model also has two
symmetric equilibria in which both clones are immune or suppressed (see
Figs 2 and 3). These are called the "HH™ and “MM " states. Note that in the
symmetric equilibria high level clones have high fields. i.e. are suppressed. and
that moderate level clones have moderate fields. i.e. are immune. Thus. high or
low levels do not correlate with the immune or suppressed state. To determine
whether a clone will grow under the influence of further stimulation one must
examine its field. not its population level.
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3
10 (b) 10 (c)

1077 0.1 10 10° 1073 0.1 10
By

Figure 3. Bifurcation diagram and nullclines of the B model varying 0 as a
bifurcation parameter. Parameters: p=2. ¢=0.02 (we have increased o 10-fold to
improve the graphical representation ). Heavy lines denote stable steady states. light
lines denote unstable steady states. The gray lines form the projections of the three-
dimensional diagram onto each of the sides. (a) Bifurcation diagram for 0 < /< 25.
(b) Nullclines for parameter values close to the bifurcation point /=8.65. (c)
Nullclines for parameter values close to the two bifurcation points at f/x 2.33.

L8+]

In the SL coordinate system the four activated states can easily be recognized
as states where one of the variables equals zero. In the symmetric HH and MM
states 4, = A, and or B, = B,. which can be recognized by a,=0and or by =0.
In the asymmetric states, HM and MH. the two fields. h,. are of the order 0~
and 0. Thus.a,x0or b x0. i.e. the sum of the logarithmic variables a. = a, +a,
or b,=b, +b, is approximately In 6 +In 1 6=0.

8. Stability and Bifurcation Analysis of the B Model.

8.1. Steady states. The precise values of the steady states of the B model can
be determined analytically. Setting the left-hand sides of Equations (20a) and
(b) to zero and substituting Equation (19) yields:
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0=0(0 '+ B,)(0+ B,)+ B,[pB,0— (0" "+ B:) (0 + By)]. (27a)
0=0(0"'+B,)(0+ B,)+B,[pB,0— (07" +B)(0+B)].  (27b)
Solving Equation (27a) for B, gives:

a0~ '+ B,)(0+ B,)

l: =1 vemell lzgl
(0~ "+ B,)(0+ B,)—pOB,

Substituting Equation (28) into Equation (27b) and rearranging vields a fifth
order polynomial in B, that can be factored into the product of a cubic and a
quadratic polynomial. The roots of these polynomials give the five possible
steady states. The cubic can be derived directly from Equations (27) in the
following manner. Subtracting Equation (27b) from (27a) we see that
B, = B, = Bis a solution of the resulting equation. Substituting B for B, and B,
into Equation (27a) or (27b) yields the cubic equation:

(6—B)(0 "+ B)(0+ B)+pliB*=0.
or equivalently:
B +[0+0 ' —a—pt]B*+[1—a(0+0 ")]B—a=0. (29)

From Descartes’ rule of signs it follows that in order for Equation (29) to have
three real positive roots. it is necessary that there be three sign changes. Thus. 1t
is necessary that (i) the coefficient of B? be negative. ie. 0+0"'—a—pl<0;
and (ii) the coefficient of B be positive, ie. p<[0+0" "1 '. For our standard
values. p=2.0=10and ¢=0.002. both of these conditions are met. However.
with 6= 10. condition (ii) will not be met if ¢ =0.1.

Solutions of Equation (29) yield the three possible symmetric steady
states in which B, = B,. These are the states that we previously have called
LL. MM and HH. For certain parameter values two of the real positive
roots of Equation (29) will be equal and only two steady states will exist.
The condition for the equality of roots is well known (cf. Abramowitz and
Stegun. 1965) and not repeated here. However. we will see below in our
numerical work that with ¢=0.02 and p=2. this condition is met and the
HH and MM states merge when 0=2.331: the LL and MM states merge
when #=8.647. From Equation (29) we can also see that the virgin state.
LL. is not exactly at B=g. Neglecting the quadratic and cubic terms in
Equation (29) we see that a better approximation to the virgin state is
B=g/(1—a[0+07"])

Using Mathematica (Wolfram Research Inc.) to analyse the fifth-order
polynomial that results when Equation (28)is substituted into Equation (27b).
we find that the quadratic polynomial is:
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[(p—160—(c>+1)—al ']B;
+p—160+(p—1—62)0+(p—2)6—(a?+1)0" ' -0~ *]B,
—(6+0)(6+0 ")=0. (30)

The solutions of Equation (30) yield B, in the asymmetric steady states. HM
and MH. B, in these steady states is then found from Equation (28).

From this analysis we see that there are at most three symmetric and two
asymmetric steady states. By solving the cubic and quadratic equations (29)
and (30) we can obtain the values of B, and B, for these steady states. We can
also analyse the conditions under which these various steady states merge and
disappear. For example. when the discriminant of the quadratic equation (30)
is zero. its two real roots coincide, If the discriminant becomes negative there
will be no asymmetric real solutions. Because the solutions to both the
quadratic and cubic are algebraically complicated. we will study the properties
of these steady states numerically.

8.2. Stability of steady states. From Equation (20) the stability of the

steady states is governed by the eigenvalues of the following Jacobian matrix:
i pf (B)—1  pB,f'(B,)

pB,f"(B,) pf(B)—1]

where B denotes the steady state value of B..i=1.2.and f'(B,)denotes the value
of the derivative of fevaluated at B,. The eigenvalues are the solution of:

(31)

2—tr(J) +det(J)=0 (32)

where tr(/) and det( /) are the trace and the determinant of J. respectively. Let
/., and /, be the two solutions of Equation (32). A stable steady state. which is
characterized by both 4, and 4, with negative real parts. requires:

tr(J)<0 and det(J)=0. (33)

From Equation (20). at steady state pf (B,)—1=—0c B, and pf(B,)—1=
—a/B,. Hence:

g a
tr(J) = _(_B?,+’;__)“<“O‘ (34a)
while
¢’ §E Do e
del[]l=§l~g—:—ﬂ'3|33_f (B,)f'(B,). (34b)

For either of the asymmetric steady states. HM and MH, B, and B, lie on
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opposite sides of the bell shaped curve (see Fig. 1). Hence. ["(B,)f'(B,) <0
and det(J)>0. If there is a supply of cells from the bone marrow. i.e. if ¢ > 0.
then tr(J/J)<0 and det(./)>0 and we conclude that both asymmetric steady
states are stable. In the singular case in which there is no supply of cells, ¢ =0,
tr(J)=0 and det(J)>0 (assuming p#0). Under these conditions
Equation (32) implies 2,= + ./ —det(J). i=1. 2, and the asymmetric steady
states will be neutrally stable with purely imaginary eigenvalues.

A similar analysis applies to the symmetric steady states except now
f(B,)f(B,)>0. since B,=8,. and det(J) may be positive or negative
depending on the relative sizes of the two terms. In the virgin state. LL. B.~¢
and the first term on the right-hand side of Equation (34b) is of the order 1.
while the second term is of the order p?a(0 '/(6 ' +a)*)%. For our typical
parameters.p=2.0""'=0.1,6 <0 ' the second term is small compared with 1.
det(J/) >0, and we conclude that the virgin state is stable.

For the HH and MM state B, is of the order # and 0 ', respectively. In these
cases the first term on the right-hand side of Equation (34b) 1s smaller than the
second and det(J)<0. These states are thus unstable (saddle-type) with one
positive and one negative eigenvalue. For any set of parameters precise
calculations can be performed using the formulae given above. The results that
we have given are typical for the parameter regime of interest but clearly
changes in stability will occur with the relative sizes of the two terms in
Equation (34b). Formally. we can conclude that for symmetric steady states in
which B,=B,=B:
p*B*f'(B)* | <l=det(J)>0=stable

E {} | =det(./)<0=-unstable.

a

8.3. Nullclines. In order to become familiar with the possible steady states
of the model and with the SL coordinate system. we depict in Fig. 2 the
nullclines of the B model in both the original and SL coordinate systems. (A
nullcline is the locus of points along which a time derivative is zero.) The
nullclines are drawn for ¢=0.002 in Figs 2a-d. and for 6=0 in Figs 2e.f. the
heavy lines are the B, =0 nullclines and the h.=0 nullclines. respectively
(where ' denotes d(-) dT). Obviously, the nullclines of the two coordinate
systems are different. The two systems only correspond at the intersections of
the nullclines. i.e. at the steady states. As is shown by the intersections of the
nullclines. the B model has five equilibrium states for these parameters. In
Figs 2c-f stable equilibria are marked with a black square and unstable
equilibria are marked with an open square. The trajectories. i.e. the dotted lines
in Figs 2a and 1b, show how the LL., HM and MH states are attained from
various initial conditions. In accordance with Equations (24a) and (24b). the
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four activated states HM. MH. MM and HH are located around B x ! and or
B.x 1. or around h;=0 and or h =0, respectively. The svymmetric virgin
state. LL. is located around B,=B,=¢ in the old coordinate system. and
around b,=0 and b, =2 In ¢ in the SL coordinate system.

For 6=0. ie. Figs 2e.f. the nullclines become straight lines in the original
coordinate system and straight lines plus an ellipsoid in the SL coordinate
system. The main difference is the loss of the LL state. Since the interpretation
of nullclines in the SL system is not intuitively clear, we will not discuss them
further. Additionally. all subsequent steadyv-state analysis will be presented in
the original coordinate system. The SL coordinate system will be used to
present the dynamic analysis.

8.4. Saddle invariant manifolds and basins of attraction. In order to
understand the ultimate fate of transients (i.e. the basins of attraction of the
stable solutions) and the birth and death of stable solutions in global
bifurcations. we study the location and interactions of the invariant manifolds
(stable and unstable) of the saddle-tvpe equilibrium MM and HH states as the
parameters vary.

The two asymmetric (immune) states. HM and MH. are sinks each with its
own basin of attraction [see the trajectories spiraling inward in Figs. 2a.b]. The
LL. MM and HH states are all located on the line of symmetry B, =B, or
bs=0. On the line of symmetry the unstable MM state “separates™ the LL and
the HH state. see Figs 4a.b. In Fig. 4 we plot the stable and unstable manifolds
(i.e. the insets and outsets) of the saddle-type MM and HH states. The one-
dimensional stable manifold of the HH state lies on the line of symmetry. The
HH state has a one-dimensional unstable manifold that is normal to the line of
svmmetry. For ¢>0 this manifold asymptotically approaches the stable
immune states (e.g. Figs 2a.b. =0.002): for =0 it asymptotically connects
with the unstable (saddle-type) MM state. coinciding with its one-dimensional
stable manifold (see Fig. 3c.d). For ¢ <0 this manifold approaches a negative
virgin state b,= —o. (This is similar to Fig. 9c that arises in the study of the AB
model.) It is not shown because ¢ <0 or b, <0 is not meaningful. The global
bifurcation at ¢=0. corresponding to the formation of this heteroclinic
connection between the HH and the MM state. will prove to be very important
for understanding the behavior of the AB models. (A heteroclinic connection is
a connection between two distinct saddle-type equilibria). The one-dimen-
sional unstable manifold of the MM state lies on the line of symmetry and
approaches the LL state on one side and the HH state on the other side. At 6 =0
the one-dimensional stable manifold of the MM state is normal to the line of
symmetry at the MM state. and coincides with the outset of HH state to form
the heteroclinic connection shown in Figs 4c.d. The light lines in Figs 4c.d are

the nullclines.
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Figure 4. Stable and unstable invariant manifolds of the saddle-type MM and HH
states in the B model. Parameters: /=10 and p=2. Panels (a) and (c) are in the
original coordinate system B, and B,. Panels (b) and (d) are in the SL coordinate
system b, and b_. The boxes ( ) denote equilibria: black means stable. open means
unstable. The arrows indicate the dvnamics on the invariant manifolds. (a. b)
& =10.002; the light lines are the invariant manifolds of the MM and HH state. The
unstable manifold of the HH state will spiral into the stable immune states. (¢.d)
o =0: the light lines are the nullclines. The heavy lines are the invariant manifolds.
The unstable manifold of the HH state forms a heterocline connection with the MM

state. Note that the LL state is absent because ¢ =0.

8.5. Bifurcations with respect to 8.

The relation between the five equilibria is
analysed for 6=0.02 in Fig. 3a. where we use ¢ as a bifurcation parameter.
Here heavy lines denote stable steady states and light lines unstable equilibria.
The two curves in Fig. 3a correspond to the solutions of the cubic and the
quadratic polynomial studied in Equations (29) and (30). The solution
corresponding to the symmetric states is an S-shaped curve with turning points
atf=2.3and 0 =8.6[see Equation (29)]. For0 <#fl < 2.3 the only steady state is
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the virgin state. As f increases, the MM and HH states are born together in a
saddle-node bifurcation at #x2.331. Thus. three symmetric states (i.e. LL.
MM, and HH) co-exist for 2.331 < <8.6. The MM and the virgin LL states
collide and disappear in a second saddle-node bifurcation at #=8.6. The
solution branch corresponding to the asymmetric states is parabolic with the
turning point at f# x> 2.338 [see Equation (30)]. This turning point intersects the
cubic solution for the symmetric states. At this point the two asymmetric
immune states bifurcate from the symmetric HH state in a pitchfork
bifurcation. This pitchfork bifurcation and the saddle-node bifurcation at
> 2.331. where the MM and HH states are born. visually appear as a single
bifurcation point in Fig. 3a because they occur so close in parameter space.

These bifurcations are shown in terms of nullclines in Figs 3b.c. The
nullclines corresponding to the saddle-node bifurcation where the virgin state
disappears are shown in Fig. 3c. For #=8.6 one can see the b, =0 and b, =0
nullclines barely touching in Fig. 3b. The reason for the loss of the virgin state is
that with @ sufficiently large. the field generated by a low B cell population
suffices for the initiation of proliferation. The nullclines around =23 are
shownin Fig. 3c. Decreasing ¢/ from its default value of 10. the distance between
the immune and the suppressed states decreases. In Fig. 3¢ this is illustrated by
the two nullclines just barely touching in the middle.

Summarizing. the B model for p=0.02 has one steadyv state for #<2.3. Then
after two bifurcations at #=2.331 and 01=2338. five steady states for
234 < <8.6 and three steady states for #>8.6. The location of the last
bifurcation point strongly depends on . The two bifurcation points are close
together in Fig. 3 because we increased ¢ 10-fold above its default value. For
lower values of ¢ the bifurcation diagram remains qualitatively the same. but
the two bifurcation points are widely separated and would require a
logarithmic ¢ axis to visualize them in one graph.

9. Analysis of the Basic AB Model.

9.1. Steady states. The steady states of the basic AB model, defined by
Equations 6. 7a.b and 11a.b. can be analysed in a manner comparable to that
of the B model. At steady state. Equations 7 and 11 become:

0=0+ B,(pf(4,)—1). (35a)
O=0+ B,(pf(4,1—1). (35b)
0=0(B,f(A,)—A,)—pd, A4, (36a)

U:(BIBL{["1|I_-’!_'g]_,uAl-‘q: ':36b]
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Hence. from (35) with ¢0:

2

B=—— (37a)
I —pf(Ad,)
a
\:___7. lS?bI
5 1—pf{dy)
Equations (36) give, for 0 #0:
A (A, +0
e il (38)
of(4,)
A (4, +0
= :ﬁl_] (38b)
of (A4,)

Equating the right-hand sides of Equations (37a)and (38a). and the right-hand
sides of Equations (37b) and (38b), we obtain:

a0f (Ay)=A,[1—pf(A,)] [ud, +d]. (39a)
oof (A,)=A,[1—pf(4,)] [uA4,+5]. (39b)

equations whose solution give the steady state values of A4, and A,.

One class of solutions are the symmetric solutions with 4, =4, = A4. From
Equation (39a). with 4, = 4, = 4. and substituting Equation (6) for f(A4). one
obtains after some algebraic simplification:

ALuOA® + (400 — 0 (p — 1) A% + (u0+ 6 — 66% (p — 1)) 4+ 00(1 — 66)] =0.
(40)

One solution is 4 =0. In this state both antibody populations are zero and we
thus call this state ZZ (for zero-zero). The Bcell populations. from
Equation (35). are B, = B, =¢. Hence. the ZZ state is a virgin state in which no
antibody is present to activate the network.

The other symmetric solutions are the real positive roots of the cubic given in
brackets. Notice, that if ¢/ < 1. then the first and last term of the cubic are
positive. If the two middle terms are both positive. then there are no sign
changes and the cubic will have no real positive roots. However. if one or both
of the middle terms is negative then there are two sign changes. and hence by
Descartes’ rule of signs the cubic has two or no real positive roots. For the
parameters p=2, #=10, 6=0.1. =20 and 6=1.48 x 1073 this latter case
applies and we expect two or no real positive solutions. In fact. for these
parameters the constant term in the cubic is negligible compared to the other
terms and the equation can be approximated by a quadratic with two real
positive roots. These roots correspond to the HH and MM states of the B
model. In this regime. i.e. when 66 <1, the LL state is negative (cf. Fig. Sc).
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Conversely. when ¢/ > [ the last term of the cubic is negative. This means that
we may have three sign changes. Then the cubic has one or three real solutions.
The former case corresponds to the HH state (see Fig. 5S¢ for ¢>0.56).
The latter case corresponds to the LL. MM and HH states (see Fig. 5c for
a<0.36).

Once the symmetric states are found. Equations (39a) and (39b) can be
analysed for the asvmmetric states. As in the case of the B model. a high-order
polynomial is obtained by combining these equations. This equation can be
factored. with one factor being Equation (40). The remaining factor is a sixth-
order polynomial. which we have not attempted to analyse algebraically.
Below. we study both the symmetric and asymmetric solutions numerically.
focusing on the bifurcation behavior of the solutions in the parameter regimes
of immunological interest.

9.2. Comparison of the steady states of the basic AB model and the B
model. Graphically. the steady states of the AB model can be compared with
those of the B model shown in Figs 2-4. First note that for ¢ =0 the equilibria
of the B cell equations [i.e. Equations (7a) and (7b)] depend only on the
antibody concentrations. Thus. for ¢ =0 we plot the B cell nullclines in the 2D
phase space spanned by 4, and 4, (Fig. 5a). The nuliclines are very similar and
intersect in the same set of equilibria as those of the B model in Fig. 2e. Thus.
the solutions correspond to A, =0 or 4, =" '. For ¢ =0. the stable virgin state
islocated at B, = B, = 4, = A,=0. This virgin state is not represented in Fig. 5a
due to the Iogdnlhmlc a\h

Varving 0 as the principal bifurcation parameter. for =148 x10"". we
show in Fig. 5b that the HM. MH. HH and MM steady states are born around

2.4. The two curves in Fig. 5b are two parabolas corresponding to the
symmetric and the asymmetric steady states. respectively. The parabola for the
symmetric steady states is defined by the two real solutions of Equation (40).
Thus. the same set of activated states is present in the B and the basic AB
models. The main difference is the stability of the HM and the MH state. In the
basic AB model these states are stable only in between two Hopf bifurcations
located at €= 3 and @ = 16, respectively (see the short heavy lines). The two
bifurcations around 6= 2.4 at which the four activated states are born are the
same as those in the B model. Decreasing f we first find a pitchfork bifurcation
where the HH. MH and HM states unite. Here the HH state becomes stable
until it undergoes the saddle-node bifurcation where the HH and MM states
merge. In the basic AB model the values of @ for which the tv.o bifurcations
occur are even more close (i.e. the distance is less than 10°%

9.3. Virgin states in the basic AB model. = We have seen above that the basic
AB model has a new virgin ZZ state in which both antibody populations are
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Figure 5. Equilibria of the basic AB model. Parameters:(0=10.p=2.0=0.1, u=20.
In panel (a) we show the B cell nullclines in the antibody phase space for 6=0. The
heavy and light lines denote the B, =0 and B, =0 nullclines. respectively. In panel
(b) we show a bifurcation diagram of the basic AB model varying 0<0/<50 as a
bifurcation parameter for 6 = 1.48 x 10 *. The heavy lines denote stable states. light
lines denote unstable states. The four equilibria are born around (/x2.4. This
involves a pitchfork and a saddle-node bifurcation (see text). The HM and the MH
states are stable in between two Hopf bifurcations located at /=3 and 0=z 16.
respectively. In panel (c) we show a two-dimensional diagram of the steady state
value of 4, varving 0 < ¢ < 1 asa bifurcation parameter (for # = 10). The straight line
is the continuation of the ZZ state: the folded line that of the LL state. The LL state
has a limit point in which it connects with the MM state (ie. a saddle-node
bifucation) at ¢ =0.56. The ZZ and the LL continuations cross in a transcritical
bifurcation located at ¢ < 0.1. Here the two states switch stability and the LL state
becomes unrealistic because of negative antibody populations. In panel (d) we show
atwo-dimensional diagram of the steady state valueof A . varving0<0<1 000 asa
bifurcation parameter (for g =148 x 10~ *). The straight line is the continuation of
the ZZ state: the curved line that of the MM state. The ZZ and the MM
continuations cross in a transcritical bifurcation located at # =675, Here the two
states switch stability and the MM state becomes unrealistic because of negative
antibody populations. The two transcritical bifurcations in panels (c) and (d)
correspond to af =1 in Equation (40).
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zero. [ Note that the ZZ state also exists in the CABG model when B, = B, =ga.
A,=A,=0 and hence f(4,)=f(4,)=0 and 4,=A4,=G,=G,=0]. For our
standard value of 6=1.48 x 10~ the LL state is negative in the AB model.
However. Equation (40) predicts a bifurcation when ¢t/ = 1. Indeed. for 6 = 10
Fig. 5cshows that the LL state becomes positive at a transcritical bifurcation at
5~0.1.and for o =1.48 x 10~ ? Fig. 5d shows another transcritical bifurcation
around 0=675. (These bifurcation diagrams were done in the original
coordinate system because a=In 0 is undefined.)

Figure 5S¢ depicts the relationship between the two virgins states, ZZ and LL.
The ZZ state is stable only when ¢ <0.1. At 6=0.1 there is an exchange of
stability with the ZZ state becoming unstable and the LL state becoming
stable. The light horizontal line is the continuation of the unstable ZZ state in
which B, = and 4, =0. The LL state is stable until it undergoes a saddle-node
bifurcation at ¢ ~ 0.56. At this point the unstable MM state and the stable LL
state unite and disappear. Summarizing. for 0 <o <0.1 the ZZ state is the only
stable virgin state, for 0.1 <a <0.56 the LL state is the only stable virgin state
and for ¢ >0.56 the only virgin state is the unstable ZZ state. For our default
value o= 1.48 x 103 there is only one virgin state, the stable ZZ state. The
unstable LL state is located at negative population values and is not physically
realizable.

Figure 5d illustrates that we do not find the saddle-node bifurcation between
the LL and MM state when / is decreased. Fora =148 x 10~ e forall<0.1
[see Equation (40)]. the LL 1s negative in the AB model (see Fig. 5¢). This
changes the S-shaped curve of the symmetric solutions in the B model into the
parabola shown in Fig. 5b. Instead. as is increased the MM state and the ZZ
state branches intersect at a transcritical bifurcation at an unrealistically high
value of 0.

9.4. Antibody lifetime. o and . Earlier work (De Boer and Hogeweg. 1989b:
De Boer et al.. 1990) suggested that the oscillatory and chaotic behavior of the
AB models depends on time scale differences between the B cell and antibody
lifetimes. We therefore study the behavior of the basic AB model as a function
of the parameters 6 =d, dy and u=rdc dy.

First. if we set =0 and continue one of the immune states with 0 as a
bifurcation parameter we find a supercritical Hopf bifurcation at 6=0.98. This
Hopf bifurcation forms the boundary between steady (6 >0.98) and oscillatory
(0 <0.98) behavior of the model. Using this point as a starting point. we can
continue the Hopf bifurcation as a function of the two antibody lifetime
parameters ¢ and . and thus are able to map the parameter region where the
immune states are stable—and where the principal behavior of the model is
stationarv—and the region where the immune states are unstable—and where
the princ;pal behavior turns out to be oscillations and ‘or chaos. The immune
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states are stable in the shaded area in Fig. 6. The horizontal line in Fig. 6
corresponds to our estimate of the antibody turnover 0 =0.1. As shown. for
0=0.1. the Hopf bifurcation is located at g~ 12.6. Here. however. the Hopf
bifurcation is numerically found to be subcritical.

In Fig. 6 the Hopf bifurcation switches from supercritical to subcritical
around 0 =0.2 (not shown). At a subcritical Hopf bifurcation an unstable limit
cvele is born “backwards™. surrounding the stable steady state. and hence local
calculations around the steady state are not capable of predicting the attractor
that is attained after the bifurcation. The attractor after such a “hard”
bifurcation will lie far away (in phase space) from the steady state that loses
stability and hysteresis should be expected close to the bifurcation in parameter
space. The dynamic behavior in this region of parameter space will be explored
in our companion paper. Part I1.

Summarizing. for our estimates of realistic values of the ratio of B cell and
antibody lifetime we expect the immune states. HM and MH. to be stable
whenever g 1s sufficiently large. i.e. roughly p=rd. dy>10. Using biological
data we estimated that yx 200 and hence we predict that for immunologically
realistic parameter values the immune states should be stable.

9.5. The basic AB model without complex tormation.  The basic AB model
can be further simplified by ignoring complex formation. i.e. by setting p=0.
This enables us to pinpoint the effects of varying d. the ratio of the antibody and
B cell lifetimes. Figure 6 shows that for u=0 a Hopf bifurcation is located at
0=0.98. Thus. for 0 <0.98 all steady states except the virgin state are unstable.

1
0.8
0.6
0.4

0.2

L= 01

0 10 20
m

Figure 6. A two parameter diagram of the Hopf bifurcation of the immune states of

the AB model varying u and 6 as bifurcation parameters. Parameters: 0=10. p=2.

g=148 % 10~ * We have shaded the region where the immune states are stable. The

ligcht horizontal line represents our estimate of the antibody lifetime 6=0.1. For

;(;{) the Hopf bifurcation is located at 6 =0.98 and is supercritical. For d =0.1 the

Hopf bifurcation is located at x4 = 12.68 and is subcritical. The Hopf switches from
supercritical to subcritical around 6 =02 (not shown)
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We will restrict ourselves to the parameter region 0 < é < 1. in which antibodies
live longer than B cells. (Computations in the region 1 < < 10°. for u=0.0.1.
1.10.....10% suggest that the immune states remain stable for larger values of
5.) We will discuss the behavior in this regime at length because the more
realistic AB models have similar behavior, but are more difficult to explain.

An overview of the model’s behavior is provided by Poincaré sections for
different values of 0. see Fig. 7. The dots in Fig. 7 are values of a, lving on the
intersection of the limit cycles and the Poincaré plane a,=0. In the regions
where no dots are plotted there does not appear to be any stable limit cycle
behavior. The horizontal lines in Fig. 7 show the a, value in the HM and MH
state. These equilibrium a, values are not sensitive to o since they are located
around a;x1In 0 '~4.6 and around a;xIn 0" ' —In 0= —4.6.

The left half of Fig. 7. ie. 0<d<0.43, shows a limit cycle that in the
projection of Fig. 8 circles both immune states crossing the plane a,=0 twice
(see Figs 8a-d). For low values of § the limit cycle is symmetric. A cycle is called
symmetric when the two halves at each side of the lines of symmetry a, =0 and
b,=0 are mirror images. Increasing ¢ decreases the limit cycle’s amplitude.
until the system goes through two pitchfork bifurcations at 0=0.24 and
5~0.27. In between these two symmetry breaking bifurcations we observe two
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1
w
=

Fieure 7. Partial bifurcation diagram of the AB model with respect to the parameter

5 (the ratio of B cell and antibody lifetimes). Parameters: 0<o<1. u=0.0=10,

p=2.6=148x10" 3 The two horizontal lines show the equilibrium value of a, in

the two immune states as a function of . For each value of 4 the dots are a, values

attained on limit cycle trajectories at a Poincare section at the hyperplane a,=0.

The limit cvcles disappear at 6 < 0.44 and 0= 0.88 where we find global bifurcations
involving the invariant manifolds of the MM and HH states.
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stable asymmetric oscillations (symmetric to each other) that each wind
around both immune states. and each cross the plane ¢ =0 twice (see e.g.
Figs 8a.b:6=0.25). For 0 >0.27. a symmetric limit cvcle is again observed (see
for example. Fig. 8c.d with 6 =0.4). until it breaks into two stable asymmetric
limit cycles at a pitchfork bifurcation for 6 =0.43 (in Fig. 9a we plot one of the
two). At approximately 6=0.44 the limit cycle disappears. In the range
0.44<0<0.88 we have been unable to find any sustained time-dependent
behavior and all trajectories that we have examined approach the virgin ZZ
state.

The loss of the limit cvcle at 0 =0.44 appears to be associated with a global
bifurcation involving the unstable manifold of the HH state. see Figs 9a.b. At
0=0.43 the outset of the HH state approaches the (asymmetric) limit cycle (we
show only one branch of the outset in Fig. 9a). At =044, however. the HH
outset approaches the virgin state (spiraling around the MM state). Here no
limit cycle trajectories were found. Between 043 <06<0.44 we expect a
heteroclinic connection between the HH and the MM state.

In the right part of Fig. 7 we can see. upon decreasing o from one, that two
asymmetric limit cycles are born at the supercritical Hopf bifurcation of the two
immune states at 6 =0.98. Each cvcle winds around only one immune state and
crosses the plane a =0 only once (see Fig.8e.l: 0=0.95). The unstable
manifold of the HH state approaches the immune states above the Hopf at
0=0.98. and approaches the limit cycles below it. Decreasing o the two limit
cycles grow in amplitude until they apparently interact with the stable manifold
of the MM state in between 0.88<0<0.89. Here we expect another
heteroclinic connection between the (one-dimensional) unstable manifold of
the HH and the (one-dimensional) stable manifold of the MM state. At o =0.88
the unstable manifold of the HH state asymptotically approaches the virgin ZZ
state and the limit cycle is lost.

Summarizing. for g =0 we find symmetric and asymmetric limit cycles in the
regions where the immune states are unstable. 1.e. for 0 <0.98. The parameter
range over which the model is capable of predicting oscillatory behavior is
strongly dependent on global bifurcations involving the stable and unstable
manifolds of the MM and the HH states. respectively. In the parameter region
where the outset of the HH state approaches the ZZ state. the model seems
unable to sustain oscillatory behavior. The possible complications involving
the loss of these limit cycles have not been studied here. We only conclude that
the limit cycles ultimately disppear around 6=0.44 and 6 =0.88.

In Part II we will show that in more realistic versions of the AB model similar
global bifurcations in the structure of the saddle invariant manifolds crucially
affect the dynamic behavior of the model. Here. we would like to emphasize the
similarity between the invariant manifold structure in Figs 4 and 9. i.e. between

the B and the basic AB model.
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¢ shapes of the limit cycles found in the diagram of Fig. 7.

The squares () show the location of the four activated equilibria. Panels (a). (c)
and (e) show antibody concentrations. panels {b). (d) and (f) show B cell
populations. fa)and (b) 4 =0.25: we show one of the two asymmetric cycles found in

the pa
symmetric ¢y
the plane a,=

rameter interval between the two pitchfork bifurcations. (c)and (d) 6=04:a
cle winding around. in this projection, both immune states that crosses
0 twice (counting crossings in one direction only). (c) and (f) 6 =0.95:

two svmmetric cvcles each winding around. in this projection, only one immune

state.
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Figure 9. An illustration of the global bifurcations involved in the birth and death of
the limit cycles of Fig. 7. We plot the unstable manifold of HH state of the basic AB
model for four values of 4. Parameters: u=0, =10, p=2, 6=148 %10 *. (a)
0=0.43: the manifold asvmptotically approaches a stable asvmmetric limit cycle
surrounding one immune state. We show only one of the two sides of the manifold.
(b) 8 =0.44: the manifold asymptotically approaches the ZZ state. (c) 0 =0.88: the
manifold asymptotically approaches the ZZ state. (d) 6 =0.89: cach side of the
manifold asymptotically approaches one of the two stable limit cycles around the
HM and MH states. At 6 x0.98 the HH states undergoes a Hopf-bifurcation and
becomes stable. After this value the unstable manifold asymptoucally approaches
the asymmetric HM and MH states.

10. Discussion. In this paper we have modeled the idiotypic interaction
between two B cells clones. Parts of the model have been analysed before (De
Boer. 1988: De Boer and Hogeweg. 1989a.b: De Boer and Perelson. 1991: Segel
and Perelson, 1989: Perelson and Weisbuch, 1992). We have estimated most of
the parameters in the model and have introduced a new coordinate system that
exploits the symmetry of the system. A detailed bifurcation analysis has
provided insights into the relationships between the steady states and the
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structure of their invariant manifolds. We have suggested that the global
bifurcations associated with the stable and unstable manifolds associated with
the HH and MM states bracket the parameter interval over which the
oscillatory behavior is observed. Our companion paper. Part II. will
demonstrate how crucial these global bifurcations in the invariant manifold
structure are for understanding the complex (chaotic) dvnamic behavior the
model i1s capable of exhibiting.

The results shows that the immune states of the B model. that lacks
antibodies. are tvpically stable and that the immune states of the basic AB
model are typically unstable. The change in stability is caused by the difference
in lifetime between the B cells and the antibodies. Here. the ratio of antibody
and B cell turnover. 6. and the rate of complex removal. j. determine the
stability of the immune states. In Part II we will show that the other parameter
determining the antibody lifetime. i.e. 2. the antibody residence time in the
spleen. also determines the stability of the immune states.

Although our parameter choices are based on biological estimates. we have
had to choose certain parameters carefully in order to be able to attain
sustained idiotypic activation in the form of either non-virgin stationary states
or oscillatory behavior. Thus. we have chosen the IgM affinity and secretion
rate (K=10° M and 10* molecules per sec) at the upper end of the feasible
range. Additionally. we used a rather low estimate of the fluid volume of the
spleen (i.e. 1% of the total volume). In the nondimensional model these
parameter choices are reflected in choosing small values for » and f. Thus,
relatively few B cells are required to attain the antibody concentration.
~(rK)~'. at which maximum cross-linking is achieved. For parameters of the
non-dimensional model this choice is only reflected in . In other words. the
virgin state is rather large in order to facilitate idiotypic activation.

Instead of using parameter values at the extremes of their feasible range.
there are three modifications of the model that would also facilitate the
attainment of significant IgM idiotypic interactions.

First, one may argue that B cells expressing IgM surface receptors are
multireactive and that many clones will be involved in any idiotypic
interaction. For example. Holmberg er al. (1989) review data showing that
natural antibodies in newborn mice have a probability of over 20% of reacting
with other IgM antibodies in the animal. This implies that the idiotype and
anti-idiotype populations. B, and B, . represent many clones rather than single
clones. In terms of the model that would mean that the source of naive B cells
from the bone marrow of any idiotype. ¢. 1s much higher than we have
assumed. Although this may be realistic. making ¢ high may eliminate the
virgin state (see Fig. 4b). Sustained oscillatory and chaotic behavior would.
however. remain feasible properties of the model. Memory. i.e. the switch from
a virgin state to an immune state on antigen stimulation, would however be lost
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as a model property if the virgin state disappeared. A model with a high value of
o might be most appropriate for the antibody dynamics during the
development. Because a high value of ¢ eliminates the virgin state. the idiotypes
are autonomously activated. This would correspond to the high connectivity of
the immune network observed at birth. If one were to consider 1gG antibodies
rather than IgM. then affinities are typically much higher and sustained
autonomous network behavior would be easy to obtain without raising . With
low values of ¢ a virgin state exists. Thus. switches between virgin and immune
states within a network might have to be mediated by IgG rather than IgM.

Second. one might question the symmetry of our phenomenological
equation f(h) for the cross-linking process. Models for receptor cross-lnking
have shown that the concentration of cross-linked receptors on the cell surface
is a symmetric log bell-shaped function of the ligand concentrations. when the
ligand is bivalent (Perelson and DeLisi. 1980). For multivalent ligands. such as
the 10-valent IgM molecules that we consider here. cross-linking curves are
asymmetric, with a slow rising part and a steep falling part (Perelson. 1981). In
terms of B cell activation this means that B cells may become activated by
extremely low concentrations of anti-idiotypic IgM. Since idiotypic activation
is a self-reinforcing process. weak activation by low concentration may easily
lead to full blown activation of idiotvpic and anti-idiotypic B cells. with both
classes of cells producing high IgM concentrations. In our phenomenological
cross-linking function asymmetries can easily be incorporated by replacing the
two saturation functions by Hill functions with different Hill coefficients.

Third. one may choose parameter values that correspond to lower affinities
and lower secretion rates and conclude that idiotypic network interactions per
se are not sufficient for maintaining stimulatory interactions and B cell
proliferation. This opens the possibility that only those idiotypes that receive
additional stimulation from, for instance. self antigens may be able to sustain
network behavior with anti-idiotypes. Such an interpretation comes close to
the hypothesis proposing that the immune network forms a central core of the
immune system centered around self antigens (Vaz and Varela. 1978:
Coutinho. 1989: Holmberg et al.. 1989). One can investigate this hypothesis in
network models composed of many clones rather than just the two clones
studied here. Such an analysis is quite feasible using the bitstring representation
for antibodies (Farmer et al.. 1986: De Boer and Perelson. 1991) or shape space
models (De Boer et al.. 1992b, 1992c: Segel and Perelson. 1988).
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