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To initiate an adaptive immune response, T cells need to interact with dendritic cells (DCs), and
the duration of these interactions plays an important role. In vitro and in vivo experiments have
generally tried to estimate the required period of opportunity for T cell stimulation rather than
the duration of individual Tcell–DC interactions. Since the application ofmulti-photonmicroscopy
(MPM) to living lymphoid tissues, the interactions between immune cells, as well as the duration
thereof, can directly be observed in vivo. Indeed, long-lasting interactions between Tcells and DCs
were shown to be important for the onset of immune responses. However, becauseMPM imaging
is typically restricted to experiments lasting 1h, andbecause Tcell–DCconjugates frequentlymove
into and out of the imaged volume, it is difficult to estimate the true duration of interactions from
MPM contact data. Here, we present a method to properly make such an estimate of (the average
of) the distribution of contact durations.We validate themethod by applying it to spatially explicit
computer simulations where the true distribution of contact duration is known. Finally, we apply
our analysis to a large experimental data set of T–DC contacts, and predict an average contact time
of about three hours. However, we identify a mismatch between the experimental data and the
model predictions, and investigate possible causes of the mismatch, including minor tissue drift
during imaging experiments. We discuss in detail how future experiments can be optimized such
that MPM contact data will be minimally affected by these factors.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Adaptive immune responses startwith the activation of Tcells
of appropriate antigen specificity in secondary lymphoid tissues.
Multi-photon microscopy (MPM) experiments applied to living
mice or explanted organs have recently begun to visualize the
dynamic processes underlying the development of such immune
responses (Miller et al., 2002, 2003, 2004b; Bousso et al., 2002;
Mempel et al., 2004; Hugues et al., 2004; Shakhar et al., 2005;
Witt et al., 2005; Celli et al., 2005; Zinselmeyer et al., 2005;
Bajénoff et al., 2006a,b; Castellino et al., 2006). This novel tech-
nique is becoming more and more influential in immunology.
C, antigen-presenting
ceptor.
+31 30 2513655.

All rights reserved.
Despite thegreat technical advances in imaging, thedevelopment
of techniques to analyze this new type of experimental data on
cellular motility and interactions is lagging behind. Taking this
analysis to a higher level is essential for quantification of the
experiments.

One of the important observations by the MPM research
field is that the activation of T cells occurs in several phases
(Mempel et al., 2004; Miller et al., 2004a). In the absence of
relevant antigen, T cells scan lymph nodes (LNs) for dendritic
cells (DCs) presenting cognate antigen. The lymphocytes do
this bycrawling aroundathighmeanvelocities of 9 to12 μm/min
(Miller et al., 2002, 2003; Mempel et al., 2004), and by inter-
acting briefly with DCs. Upon detection of the presence of
cognate antigen, the motility of T cells decreases slightly, yet
the duration of interactions with DCs remains on the order of
minutes (Miller et al., 2004a; Mempel et al., 2004) (generally
referred to as “phase one”).Amuchmorepronounced change in
the behaviour of Tcells takes place after several hours (referred
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to as “phase two”): Most T cells are then organized in clusters
around DCs, and have long-lived interactions with these
antigen-presenting cells (APCs) (Mempel et al., 2004; Miller
et al., 2004a). It is thought that immunological synapses (IS),
i.e., a specific ordering of molecules of similar size in the
opposing membranes of T cells and DCs, form during these
long-lasting interactions (Monks et al., 1998; Grakoui et al.,
1999; Stoll et al., 2002). The exact timing of progressing from
phase one to phase two depends on experimental circum-
stances (Mempel et al., 2004; Miller et al., 2004a; Hugues et al.,
2004; Shakhar et al., 2005; Celli et al., 2007). The requirements
for the transition are becoming more and more evident lately. It
was recently shown that expression of Intercellular Adhesion
Molecule-1 (ICAM-1) by mature DCs is needed to establish
a population-wide transition to phase two-like interac-
tions (Scholer et al., 2008) (i.e., there are still some long-lasting
T–DC interactions in the absence of ICAM-1). Further, the timing
of the onset of “phase two” appears to depend on both the
antigendose and thenumberofDCs thatpresent cognate antigen
(Henrickson et al., 2008). Approximately one day after initial T
cell transfer, the lymphocytes regain their highmotility and start
proliferating (“phase three”).

From in vitro and in vivo experiments it is known that the
window of opportunity for T cell receptor (TCR) stimulation is
a strong determinant for the ensuing T cell differentiation
program(Gett et al., 2003; van Stipdonket al., 2003; Prlic et al.,
2006; Celli et al., 2007). Therefore, an important question
related to T cell activation is how long the interactions
between T cells and DCs last during phase two. Unfortunately,
this question is difficult to answer because imaging experi-
ments typically last only 30 to 60min due to current technical
constraints of MPM (Germain et al., 2006; Breart and Bousso,
2006)whereas T–DC interactions can be on the order of hours.
As a result, a substantial fraction of the observed interactions
lasts the entire imaging period. It is thus not possible to
directly infer their exact duration, but only that the contact
lasted at least as long as the imaging period. Further, the
limited observation time entails that in many of the cases
either the initiation or the termination of a contact is not
observed. For these interactions, we again do not know the
exact duration, but only that theymust have lasted at least the
time that the contact was truly observed. An additional
problem is that the size of the imaged volume is relatively
limited (Germain et al., 2006), especially with regard to the z
directionwhich is usually only approximately 50 μm thick (7 T
cell diameters). Because even conjugates of cells exhibit some
(possibly passive) movement, T–DC pairs drift in and out of
the field of view. When this occurs, this again means that we
know only the minimal, rather than the exact, duration of the
observed interaction.

There is no clear consensus on how experimental obser-
vations on interaction times are presented. One commonway
is to plot the percentage of remaining contacts as a function of
contact duration (e.g., Mempel et al., 2004; Miller et al.,
2004a; Garcia et al., 2007). Another frequently used pre-
sentation method to compare different experimental settings
is by plotting the individual contact durations against the
experimental conditions (e.g., Hugues et al., 2007; Scholer
et al., 2008). It is often not reported whether only interactions
whose exact duration is known are included in these graphs,
or whether they also comprise contacts of which only a
minimal duration is known. So far, no “complete” data set has
been presented in the literature, i.e., a data set containing
contact duration information for all interactions, whether
their beginning or end was observed, and whether it was the
spatial or temporal constraints of imaging that prevented
knowing the exact duration of the contact. One can certainly
get qualitative insights without making a distinction between
all these differently observed interactions. However, lumping
these data into a single category fails to deliver an estimate for
the average duration of T–DC contacts, possibly leading to
severe misjudgements of the contact duration. Indeed, we
will show that in order to arrive at a reasonable, quantitative
estimate for the contact duration directly from such contact
data, it is required to distinguish between the possible
observation categories.

In this paper, we take a first step in trying to obtain a
quantitative estimate of the true duration of contacts betweenT
cells and DCs. We develop a method to estimate the true
distribution of contact times, using as much of the available
contact time information available as possible. Our analysis
emphasizes that it is important to realize that the total number
of observed events depends on both the imaging time and on
the size of the imaged volume. Interactions that last longer than
the time window of imaging (e.g., 1 h) are over-represented in
the observed events. For instance, a 2-hour contact that started
1 h before imaging would be observed, but a 0.5-hour contact
that started at the same timewould not be observed, i.e., there is
technically speaking a left truncation of the data. This gives the
impression of a higher average contact time than is in reality the
case. In Box 1 the “recipe” for our estimation method is
summarized to give an impression of how such a procedure
works in practice (this recipe may help to establish future
collaborationsbetween theoreticiansandexperimentalists).We
further present a “shortcut approach” (summarized in Box 2)
that can be used to estimate only the average true contact time
rather than the entire distribution of true contact times.We test
the analysis using artificial contact data generated by a
simplified version of our previously published spatial model of
T cell migration (Beltman et al., 2007a,b), and by applying it to
brief and long computer simulations (in the latter case the true
distribution is known). Finally, we analyze the largest experi-
mental data set on contact times that is currently available
(Henrickson et al., 2008). From that analysis, we identify a
mismatch between the data and the necessarily simplified
scenario we consider in our estimation method. This mismatch
seems at least partially due to the problem of drifting of the
entire visualized tissue in imagingexperiments, especiallywhen
the spatial distribution of conjugates is inhomogeneous. We
discuss in detail how future experiments can be set up such that
MPM contact data will be minimally affected by artifacts due to
such tissue drift. Application of our novel method to analyze
such data should improve future estimates of the contact
duration between immune cells from imaging experiments.

2. Model

2.1. The true distribution

Consider the hypothetical scenario that we would not be
limited by current MPM technology in terms of a limited time
window of observation and a limited field of view. Hence, we



Fig. 1. Relation between contact duration and type of observed event when imaging is time-limited. (a) Cartoon of possible event types for contacts between Tcells
(red) and DCs (green). Abbreviation codes for these event types are oo, ot, to, or tt (see further explanation in text). (b, c) The event type that is observed depends
on the time at which the contact truly started (horizontal axis) relative to the imaging period, which lasts from 0 to T hours. The possible event types also depend
on whether the true contact time x is shorter than the imaging period, i.e., xbT (b), or longer than the imaging period, i.e., xNT (c). See text for examples.

56 J.B. Beltman et al. / Journal of Immunological Methods 347 (2009) 54–69
would be able to monitor all occurring interactions between
cells, and plot the ensuing distribution of contact times. The
end result of this thought experiment would approach what
we will refer to as the “true distribution”, which is the
hypothetical frequency distribution of contact times consid-
ering that circumstances are constant over time. Although in
reality circumstances might change continuously, considering
a constant true distribution of contact times is required to be
able to do a quantitative analysis (see also the Discussion).
The goal of this paper is to make an estimate of the true
distribution from a set of observed interactions. To do this, the
contact durations of all conjugates are considered to be
independent of each other, which seems reasonable given the
generally low density of fluorescently labeled cells in imaging
experiments. The probability distribution of contact durations
(i.e., the true distribution), which is taken to be constant with
time, is denoted by g(x). Here, x is the true duration of an
interaction (for instance in hours), and g(x) gives the rela-
tive frequency of occurrence of new contacts of duration x (i.e.,

g(x) is a probability density function, and
R1

x=0
g xð Þ dx = 1).

The total number of new contacts per hour is given byR1
x=0

Ng xð Þ dx = N, where N is the rate of new contact

formation (contacts initiated per hour). If required, N could
additionally be scaled to represent the rate of new contacts per
volume (contacts initiated per hour and per mm3).
2.2. Limited time window of imaging

What happens when imaging allows us to only see
contacts within a limited time window, for instance 1 h
(assuming that we are able to image an infinitely large
space)? In that case, the initiation of newly formed conjugates
could or could not be observed; the same is true for the
termination of contacts. Therefore, four event types can occur
(Fig. 1a): initiation and termination observed (oo); initiation
observed but termination not because imaging ended (ot);
termination observed but initiation not because imaging had
not yet started (to); and contact present during entire
imaging period (tt). The abbreviation codes in brackets
consist of two letters, where o stands for “observed” and t
means “not observed due to limited time window”. The first
letter concerns the initiation of the event, and the second its
termination. Technically speaking, a limited time window
leads to data that are both left- and right-censored, i.e., the
value of an observation is only partially known. Further, the
data are left-truncated, because when a contact is initiated
before imaging, it could be that its termination also occurs
before we start observing. As a consequence, the conjugate
would be “missed” entirely, and this happens more often for
small contact times than for large contact times. Hence, a
limited time window results in a bias in favour of observing
long-lasting interactions.

Our final goal is to attempt to use the observed events to
reconstruct the underlying true distribution. To be able to
solve this problem, we first need to know how the time
interval that we actually observe each event (referred to asw)
during the imaging period depends on the true interaction
time period x. For instance, a contact that was initiated 1 h
before imaging and that was terminated half an hour after we
started imaging (i.e., we would observe it as a to event), has a
true contact time of x=1.5 h, and an observed contact time of
w=0.5 h. Note that w is always between 0 and T (where T is
the length of the time window of observation, which is
typically 1 h), because observation time can never exceed the
imaging period, whereas the true contact time x can vary
from 0 to infinity.

For events of type oo (initiation and termination observed)
the relationship between x and w is straightforward: the
observation time w is equal to the true contact time x. To
observe both the beginning and the end of an interaction, it
should fall completely within our window of observation. For
instance, when considering a 1-hour observation period, a 45-
minute contact (duration x=0.75) should start somewhere
during the first 15 min (between time 0 and 0.25), otherwise
its terminationwould not be observed (Fig. 1b). The longer an
interaction truly takes, the smaller the probability of obser-
ving its beginning and end (i.e., this is proportional to T−x).
The expected distribution of these “completely” observed
events, referred to as foo(w), therefore becomes (T−w)g(w)
(Fig. 2b).



Fig. 2. Distributions of different event types. (a) An example of a true distribution. Contact time (x) is on the horizontal axis, where imaging time is scaled to T
hours. (b–d) Accompanying distributions of expected oo, tt, ot, and to events (see explanation in text). The observed contact time (w) is on the horizontal axis.
(d) The distribution of events whose initiation or termination is not observed (ot or to) is built up out of two parts, contributed by interactions lasting shorter
(denoted by “A”) or longer (denoted by “B”) than the imaging period.
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The observed duration of events of type tt (neither beginning
nor end observed) is always equal to the length of the imaged
time window, i.e., length T. Hence, the “distribution” ftt(w) is 0
for everyw exceptw=T. We need to take into account that only
interactions that last at least the duration of imaging (i.e., T) will
contribute to tt events (for instance, an event that is observed for
1 h cannot last 45 min in reality). Further, an interaction should
start between time T−x and time 0 to observe neither the
initiation nor the termination (Fig.1b). Therefore, the frequency
of tt contacts is proportional to (0−(T−x))g(x) (latest time of
start minus earliest time of start to become observed as a tt
event), that is, (x−T)g(x). The probability density of tt events at

w=T thus equals
R1

x=T
x − Tð Þg xð Þ dx (Fig. 2c). Importantly, this

means that a limited time window leads to tt events becoming
over-represented in the observed data. For example, suppose
that g(2)=g(10), that is, the probability density in the true
distribution is equal for 2-hour and 10-hour interactions. In that
case, an interaction of 10 h will occur as a tt event within the
imaging period with a (10−T)/(2−T ) times higher frequency
thana2-hour interaction (whichequals 9 for the frequentlyused
T=1 h in experiments). This further entails that the higher the
average true contact duration, the larger the fraction of observed
tt events will be. This could erroneously give the impression of a
higher average contact duration than is in reality the case. Our
method of analysis will automatically take this phenomenon
into account and will correct for it.

For events of type ot and to (either initiation or termination
observed), we know how long they have lasted minimally
(i.e., w). Thus, we should take into account that only contacts
lasting longer than w contribute to ot and to events of
length w. To derive the distribution of ot events, consider
the separate contributions of interactions lasting shorter
(xbT) or longer (xNT) than the imaging duration separately:
When xbT the frequency of ot interactions (of length x) is
proportional to xg(x) (namely, events that start between time
T−x and time T, Fig. 1a). The observation time w of these
interactions must lie somewhere between 0 and x. Each of
these observations is equally likely because for every
particular duration new interactions start with an equal
probability at any point in time (from the perspective of the
entire population of cells that we consider here; it need not be
true from the perspective of individual cells as this may
depend on the history of a cell). Therefore, the contribution of
contacts of length x to ot events of lengthw is xg(x) divided by
x, or simply g(x). Taking only interactions of length xbT into

accountwould thus contribute
RT

x=w
g xð Þ dx to the distribution

of ot events. Note that this means that this part of the fot
distribution will decline with w (Fig. 2d, denoted by “A”),
irrespective of the shape of the true distribution. What will be
the contribution to fot of interactions lasting longer than the
imaging duration (xNT)? In that case, the contribution to ot
events is proportional to Tg(x) because for any event that
starts in the observationwindow the end will not be observed
(Fig. 1b). These interactions will spread out evenly between
observations of length 0bwbT. Thus, the contribution of
contacts of length x to ot events of lengthw now becomes Tg(x)
divided by T, or simply g(x) as before. This predicts that the
contribution to the distribution of ot events by interactions of

length xbT equals
R1

x=T
g xð Þ dx. Note that this part of the ot

distribution is equal for different w values (Fig. 2d, denoted by
“B”). Summing up the two contributions, the predicted

distribution for ot events becomes fot wð Þ = R1
x=w

g xð Þ dx. The
distribution for to events, fto(w), can be derived in a similar
fashion, and is equal to fto(w). This symmetry automatically
follows from considering a true distribution that does not
change over time.
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Summarizing, if we would know the true distribution of
contact durations (e.g., Fig. 2a), we could predict the
distributions of different event types to be (Fig. 2b–d):

foo wð Þ = T − wð Þg wð Þ ð1aÞ

fot wð Þ = fto wð Þ =
Z1

x=w

g xð Þ dx ð1bÞ

ftt wð Þ =

0 if w b TZ1
x=T

x − Tð Þg xð Þ dx if w = T;

8>><
>>: ð1cÞ

ZT
w=0

foo wð Þdw + N +
ZT

w=0

ftt wð Þdw =
Z1
x=0

T + xð Þg xð Þ dx:

ð1dÞ

The latter equation gives the total number of events one
expects to observe during imaging normalized to the total
number of contacts initiated per hour (i.e., it does not count
up to one). This equation can alternatively be derived in a
more direct manner (see Supporting material). Further, from
Eq. (1d), one can see that the higher the frequency of contacts
longer than the observation window (of length T), the more
events will be observed (per hour).

We have so far derived how the expected event distributions
dependon the true distribution for the case of imaging limited in
time. Before considering howwe can solve the reverse problem,
i.e., estimate the true distribution from observed distributions,
we need to consider the expected event distributions when
imaging is not only limited in time, but also limited in space.
Fig. 3. Possible event types when imaging is limited in both space and time. Cartoon
Abbreviation codes for these event types are oo, ot, os, to, tt, ts, so, st, and ss (see furt
or out of the imaged volume, and solid arrows denote the initiation or termination
2.3. Imaging limited in both time and space

Imaging of a limited field of view means that conjugates can
enter or leave the imaged volume during observation. Hence,
there are now three instead of two possible manners for
observing initiation and termination of events, resulting in nine
possible event types in total. Apart from the previously discussed
oo, ot, to, and tt events, there are now also os, ts, so, st, and ss
events (Fig. 3). Here, s means “not observed due to entering or
leaving the imaged space” (the meaning of o and t is as before).

To derive how the distributions for each of these event
types depend on the true distribution, we need to describe
the dynamics causing conjugates to leave and enter the
imaged volume. The most basic way to do this is to define a
constant rate (per hour), δ, of leaving and entry of conjugates.
Note that this parameter is distinct from the rate of leaving
and entry of individual cells that are not in contact: cells will
generally leave and enter at a much higher rate than
conjugates, but this is irrelevant for our approach. Consider-
ing a constant δ will enable us to analytically derive the
expected event distributions, thus giving us a baseline
prediction to compare with. Note that the simplification
does not take into account that δmay in reality depend on the
observed contact time and on time itself (i.e., δ is a function of
w and of time), as discussed in more detail later. We further
need to introduce another time variable, w′, to distinguish
from w used in the previous section. The time variable w is
the time that a conjugate would have been visible if it had not
walked out of view prematurely. Instead, w′ denotes the time
interval that a conjugate is observed, taking entry and exit
into account, i.e., for each eventw′≤w. Because we consider a
constant rate of leaving and entry of conjugates, the fraction
of conjugates that have not left the imaged volume in a time
interval ofw′ hours is proportional to e−δw′. Furthermore, the
probability density of conjugate leaving at time w′ is δe−δw′

(i.e., an exponential probability distribution). Using these
equations we can derive each of the nine event distributions.
of all possible event types for contacts between T cells (red) and DCs (green)
her explanation in text). Dashed arrows denote movement of conjugates into
of an interaction.
.
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For the derivation of the nine distributions, it helps to look
back to the event distributions derived above. For oo, ot, to,
and tt events this is most straightforward. Because in these
cases conjugates do not walk into or out of view, the time that
conjugates are observed, w′, is equal to w. Therefore, the
distributions found previously are simply multiplied by the
probability that the conjugates have not left during a time
interval of w′ hours, i.e., by e−δw′ for oo, ot, and to events, and
by e−δT for tt events (because in the latter case w′=T).

Next consider events of type os (initiation observed, then
conjugate walked out of view). These occur when events
whose initiation is observed (i.e., the oo and ot events for the
case of imaging only limited in time) leave the imaged space
after exactly w′ hours. The interactions giving rise to these
events must last at least w′ hours. Using Eqs. (1a) and (1b),
the expected distribution for os events becomes fos wVð Þ =
δe−δwV RT

w=wV
T−wð Þg wð Þdw+

RT
w=wV

R1
x=w

g xð Þ dx dw
 !

, which

can be simplified to δe−δwV T − wVð Þ R1
x=wV

g xð Þ dx.
The expected distribution of ts events (contact was

present when imaging started, then conjugate moved out)
can be derived analogously. Interactions that would have
been to or tt events when imaging were not limited in
space contribute to this distribution. Again, the interac-
tions must last at least w′ hours. Using Eqs. (1b) and
(1c), the distribution for ts events becomes fts wVð Þ =

δe−δwV RT
w=wV

R1
x=w

g xð Þ dx dw +
R1

x=T
x − Tð Þg xð Þ dx

 !
, which

simplifies to δe−δwV R1
x=wV

x − wVð Þg xð Þ dx.
Thus, to derive the distributions for oo, ot, os, to, ts, and tt

events, we used the previous derivations for the case when
imaging is limited in time but not in space (Eqs. (1a)–(1c)).
The distributions for events that are initiated by a conjugate
moving into the field of view (so, st, and ss events), however,
need to be derived “from scratch” which is much more
complicated (shown in the Supporting material for ss events,
which is the most complicated of the derivations). However,
note that the distributions for so and st events should be equal
to those for os and ts events, respectively. This symmetry is a
consequence of our simplification that conjugates enter and
leave with a constant rate (irrespective of their spatial
position), and that g(x) does not change over time. In
summary, the different event types depend on the true
distribution as follows:

foo wVð Þ = e−δwV T − wVð Þg wVð Þ ð2aÞ

fot wVð Þ = fto wVð Þ = e−δwV
Z1

x=wV

g xð Þ dx ð2bÞ

fos wVð Þ = fso wVð Þ = δe−δwV T − wVð Þ
Z1

x=wV

g xð Þ dx ð2cÞ

fts wVð Þ = fst wVð Þ = δe−δwV
Z1

x=wV

x − wVð Þg xð Þ dx ð2dÞ
fss wVð Þ = δ2e−δwV T − wVð Þ
Z1

x=wV

x − wVð Þg xð Þ dx ð2eÞ

ftt wVð Þ =
0 if wV b T

e−δT
Z1
x=T

x − Tð Þg xð Þ dx if wV= T

8>><
>>: ð2fÞ

ZT
wV=0

foo wVð ÞdwV+ N +
ZT

wV=0

ftt wVð Þ dwV

=
Z1
x=0

T + 1 + δTð Þxð Þg xð Þ dx:

ð2gÞ

As before, the latter equation gives the total number of events
one expects to observe during imaging normalized to the total
number of contacts initiated per hour (see Supportingmaterial for
the derivation). From this equation one can see that the expected
number of events depends on the size of the imaged volume: a
small field of view implies a high rate of entering and leaving
because conjugates are generally close to one of the borders.

As mentioned previously, the rate of leaving and entry of
conjugates (δ) is in reality not constant. One effect playing a role
is that conjugates that are close to one of the borders of the field
of view are more likely to enter or leave than those far away
from it. Thus, conjugates that walk into view are likely to leave
again soon afterwards (because they are located close to one of
the borders), making δ dependent on observation time w.
Below, we will investigate how strongly this phenomenon
affects the event distributions, and we will show that the best
strategy is to exclude the entry event distributions from the
fitting procedure. Finally, the rate of leaving could depend on
time itself (which appears to be the case in the experimental
data set we analyze below). We later discuss how such a time-
dependent δ would affect the expected event distributions.

2.4. Maximum likelihood estimate for the contact time distribution

Knowing how we can go from true distribution to event
distributions, we next need to consider how the inverse
problem of reconstructing the true distribution from the
event distributions can be approached. A partly non-
parametric reconstruction method is discussed in the Sup-
porting material. However, this approach becomes very
complex and observations contribute as entire event classes
rather than individually to the reconstructed true distribution
(for details, see the Supporting material). Therefore, we here
discuss a maximum likelihood approach where we begin by
choosing a particular, parametric form for the true distribu-
tion. Because we do not knowwhat form the true distribution
has, we will try several options (for the probability density
functions that describe the distributions used in the entire
paper see the Supporting material). One natural choice that is
often used in biology is the lognormal distribution, which
describes a more or less skewed distribution with a long tail
(Fig. S1a). We further use a gamma distribution which can
describe a similar shape, but is more versatile because
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depending on its “shape” parameter it can additionally take
an exponential-like form (Fig. S1c). By using the gamma
distribution we can thus have the fitting algorithm choose
which of the two possible forms fits best. Finally, we use a
distribution that is the sum of two lognormal distributions
(Fig. S1b), because this can describe a peak of brief and a peak
of long interactions (which could be the case in reality). For
every parameter combination of the chosen distribution g(x),
Eqs. (2a)–(2f) can be used to calculate the expected frequency
of occurrence of each event type of certain observed lengthw′.
Note that the event distributions need to be rescaled to sum up
to one, which is achieved by dividing by the total number of
events (Eq. (2g)). In case only a subset of event classes is being
used, Eq. (2g) is replaced by the sum of the used classes. Hence,
for each event that was actually recorded in an experiment, we
can calculate the probability density of this specific event,
which will depend on the parameter values of the chosen
distribution g(x). Multiplying the probability densities for all
observed events gives the likelihood for the occurrence of an
entire data set of observed events (or analogously adding the
logarithm of the probabilities gives the log-likelihood). The
parameter values that maximize the likelihood then determine
thedistribution thatfits thedata best (given thatparticular type
of distribution). Box 1 shows a summary of the recipe for
reconstructing the true distribution. We performed the like-
lihood maximization procedure in R using the package bbmle
(both R and bbmle are available at http://www.r-project.org).

2.5. Calculating the average contact duration

After having used the above maximum likelihood approach
to estimate the true distribution that underlies a specific data
set of event distributions, one can also calculate the accom-
panying average contact time for the predicted distribution (as
we will do below for simulated as well as for experimental
data). However, the considerations behind the developed
model imply that there also exists an alternative, simple way
to estimate the average contact duration (we refer to this as the
“shortcut approach”, summarized in Box 2). As explained in
the Supporting information (section “Expected number of
observed events”), the number of conjugates one expects to

observe at any point in time equals N
R1

x=0
xg xð Þ dx (where N is

the number of contacts initiated per hour; because of
the symmetry of the considered system this also equals the
number of conjugates terminated per hour). Note that the

integral
R1

x=0
xg xð Þ dx is in fact the same as the definition of the

average of a probability distribution. Thus, dividing the number
of conjugates observed at a specific timepoint by the number of
conjugates one sees initiating (or terminating) per hour
provides an estimate for the average contact time. For instance,
one could use the number of conjugates at the start of imaging
(note that this is equal to the number of events in classes tt, to
and ts as is explained in the Supporting information). However,
because the number of conjugateswill fluctuate over time even
if it remains approximately constant, it is better to use the
average number of conjugates over all time points. Further-
more, the estimate can be refined by dividing by the average of
the number of conjugates one sees initiating and those that one
sees terminating.
As is the case for the event-based approach to estimate the
true distribution, the shortcut approach relies on a true
distribution that does not change over time, and on a constant
rate of leaving and entry of conjugates. It has the advantage
that we do not need to choose a particular form for the
underlying true distribution. However, one cannot directly
visualize how good the estimate is (which is possible in the
event-based estimate because one can plot the observed
versus fitted event distributions). Furthermore, having an
estimate for the entire distribution of contact times is more
informative than of only the average contact time, which is
especially true when both brief and long interactions occur.

3. Results

3.1. Testing on simulated data

To assess whether the method to estimate the true dis-
tribution of contact times gives appropriate results, we need a
way to generate artificial contact data for which the true
distribution is known. We take two approaches to generate
artificial data. First, we use a Monte Carlo approach to generate
contact data from a known distribution and split these in the
various event classes according to the scenario we consider
(see Supporting information). This ensures that the equations
for each of the event distributions we derived are correct (see
supporting Fig. S2).

We next generate artificial contact data using a spatially
explicit model of T cell–DC interactions, which allows us to
validate our event-based approach in a more realistic setting.
For this we use a simplified version of our previously published
computer simulations of T cell–DC interactions in lymph nodes
using the Cellular Potts Model (CPM) formalism to describe cell
motion and cell–cell interactions (Beltman et al., 2007a,b) (for
details see the Supporting information). Briefly, in silico T cells
perform a random walk on long time scales yet move
persistently in the short term. During their journey they come
into contact with in silicoDCs that do not move persistently but
displace themselves passively, randomly, and slowly, by
stochastic membrane fluctuations. Depending on adhesive
preferences between T cells and DCs, and on membrane
fluctuations, cellular interactions are broken after a variable
(i.e., not predetermined) duration. Because the simulations are
meant to validate our method to estimate the true distribution
of contact times only, we combinemultiple simulationswith 10
Tcells that interact with a single DC in a two-dimensional space
that is devoid of other cells (see Fig. S3 andVideo S1). In order to
approach the true distribution of contact times for a particular
parameter setting in such simulations, we need to be able to
follow contacts for a long time. Therefore, we first perform very
long (100-hour) simulations where we consider a wrapped
space that cells cannot leave (note that the latter is required to
followcontacts for their entire duration). This strategy allows us
to circumvent the time window and spatial window problems.
Subsequently,weanalyzeexactly thesame simulationsa second
time taking both problems into account: The time window
problem is reproduced by splitting the 100-hour simulations in
100 simulations of 1 h. The spatial window problem is
introduced by counting a conjugate that crosses one of the
borders as one that is leaving, whereas we consider that
conjugate to enter as a “new” one at the other side at the same

http://www.r-project.org
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time. Thus, we have established a system that provides us with
artificial contact data (events) that we can apply the proposed
method to in order to predict the true contact time distribution.
At the same time, performing sufficiently long simulations of
contacts between cells in awrapped spaceallowsus to approach
the true distribution, and thus to test the validity of themethod.

Using the simulated contact data we first investigate how
strongly the entry event distributions are affected by the
relatively high probability of leaving for conjugates that have
just moved into view. Artificial contact data from representative
simulations (at one particular parameter setting for the CPM
simulations) are shown in Fig. S4a (histograms). We fitted all
observed events (i.e., including entry events) to a true distribu-
Fig. 4. Estimating the contact duration of simulateddata. The sumof two lognormal dist
spatial simulations using our estimationmethod (1-hour observationwindow). (a) The
shown inhistograms, alongwith themaximumlikelihoodfit (solid lines;filled square in
(b) The estimated fit (solid line) for the true contact time distribution plotted throug
distribution. The true contact time (x) is on the horizontal axis. The inset shows the fi

simulated data (grey lines). Note the logarithmic scale of the vertical axis. (c) The aver
data (bootstrap analysis;median of this distribution is 1.45h, and the 95% CI is 1.38–1.52
based approach in upper panel; using the shortcut approach in lower panel) with the t
events in 100-hour simulations inwhich entry and exit is not taken into account. Note th
of the event, to calculate the true average we assign different weights to each event (se
tion described by the sum of two lognormal distributions. The
resulting fit appears to be very poor formost event distributions
(compare solid lineswith histograms in Fig. S4a). This is because
including the entry events in the fitting procedure leads to an
overestimate of δ. Note that despite the poorfit, the prediction of
the average contact duration is very accurate (Fig. S4b).

When we use all observed events minus those in which
conjugatesmoved into view to perform the fitting procedure, it
is clear that the method gives much more appropriate results
thanwhen all event classes are used (Fig. 4a). Furthermore, we
are not introducing a bias by leaving out these entry events, as
confirmed using the Monte Carlo simulations (see Supporting
information). Therefore, when using the presented model to
ributionswasfitted to cellular interactiondata (excludingentryevent data) from
observed distributions (types oo, ot, to, tt, os and ts; see explanation in text) are
lower rightmost panel). Theobservedcontact time (w′) is on thehorizontal axis.
h a histogram of data from a 100-hour simulation, which approaches the true
tted distribution (black line) along with fits for 50 random permutations of the
age contact duration estimated for 1000 random permutations of the simulated
h) (d)A comparison of the estimated average contact duration (using the event-
rue average contact duration. The latter is calculated from the distribution of oo
at, because the probability of observing these events declineswith the duration
e main text). Error bars denote 95% CIs (determined with a bootstrap analysis).
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predict the true contact time distribution, the best strategy is to
leave out the entry event data (which is what wewill do in the
rest of this paper). Note that in that case deviations between
observations and fit are still present for os and ts events
(Fig. 4a). This is again a consequence of not taking into account
that conjugates that are close to the border of the field of view
are more likely to leave or enter than those far away from it.
Although this phenomenon affects mainly the entry event
distributions, the simplification also has a, less pronounced,
effect on the os and ts distributions. Newly formed contacts and
contacts that were already present at the onset of imaging are
equally likely to occur close to, or far away from, the border of
the field. Still, those conjugates that have not left after a long
timearemore likely to be positioned in the centre of the imaged
volume than close to the border. Therefore, os and ts events
with long observation times occur less often than expected
from our analysis, and consequently those with brief observa-
tion times more often.

The distribution for the true contact time (for one particular
parameter setting of the CPM simulations) that is predicted
from the observed events in 1-hour simulations using our
method is shown in Fig. 4b (solid line). It approximately follows
the observed data from the 100-hour simulation (which
approaches the true distribution for the particular CPM
parameters used), thus demonstrating the validity of our
estimation method. Indeed, the estimated average contact
duration for the fitted distribution (1.45 h) is close to the true
average observed in the 100-hour simulation (1.47 h). To find
confidence intervals (CIs) for the estimated average contact
duration we performed bootstrapping (for details see Box 1).
That is, we randomly sample “new” data sets from the
simulated data and applied the estimation method to these
data sets (inset in Fig. 4b). The result gives an indication for the
distribution of the predicted mean contact duration (Fig. 4c).

To see how the estimation method behaves depending on
the relative length of the observation window we performed
simulations with different average contact times, which was
achieved by modifying the adhesion preference between DCs
and T cells in the simulations. In simulations with long
average contact times, the true distribution (approached by
the 100-hour simulation data) becomes clearly bimodal
(Fig. S5a), containing both a peak of brief interactions and
one of long interactions. Using a distribution that can describe
two separate peaks, such as the sum of two lognormal
distributions, therefore indeed seems an appropriate choice.
Using the event-basedmethod we can very accurately predict
the average contact duration (Fig. 4d, upper panel). Note that
the shortcut approach to estimate the average contact
duration (based on number of conjugates present and
number of initiating and terminating conjugates) also results
in a very good estimate (Fig. 4d, lower panel). These estimates
are clearly much better than the underestimate one would
obtain by calculating the average of all observed contact
durations (i.e., lumping all events). That procedure is often
used in papers investigating contact times, but this generally
fails to deliver a good estimate. For instance, for the
simulation with a true average contact duration of 5.50 h,
the minimal prediction from the lumped data would give
47.1 min, while applying our method gives 5.51 h. Note that,
for the calculation of the true average, even in simulations
that are as long as 100 h, small deviations from the true
distribution will occur because the longer an oo event takes,
the lower is the probability of observing it (Eq. (1a)).
Therefore, in the calculation of the true average in Fig. 4d
we assigned weights to correct for this declining probability,
i.e., each oo observation gets weight 1/(1−w). For instance,
in 100-hour simulations an oo event of 10 h gets a weight of
1/(1−10/100)≈1.11. For our 100-hour simulations this
gives a small, but non-negligible correction (e.g., without
applying the correction we would find an average of 3.69 h
instead of 3.82 h for one of our simulation settings).

Despite the accurate results for estimation of the average
contact time, it appears that the method is not necessarily able
to provide a good reconstruction of the location of the peak of
long interactions (Fig. S5b). Related to this, estimating the
median contact time depends very much on the distribution
that is used as a basis for the fit, whereas the average contact
time does not. The prediction for that average is very robust
because, apart from finding an estimate for g(x), any fit also

needs to estimate the integral
R1

x=0
xg xð Þ dx. This term, which is

in fact the definition of the average of a distribution, is part of
each event distribution equation because it is present in the
total number of events one expects to observe during imaging
(see Eqs. (1d) and (2g)). It is intuitive that especially tt events
will play an important role in the calculation of the average:
These events provide us with no information about the shape
(and as a consequence about the median) of the true
distribution, yet it is clear that a large number of tt events
entails a long average contact duration. From the equation for
tt events one can indeed see that it contains the factorR1
x=T

xg xð Þ dx (representing a certain fraction of the definition

of the average of a probability distribution). Hence, these
considerations explain why any good fit of the event distribu-
tions of a data set entail an accurate and robust average of that
fit. Another consequence of this is that there may be multiple
parameter settings that result in a similar likelihood (i.e., the
likelihood landscape may contain multiple maxima of similar
height). Nevertheless, the average contact times resulting from
these different maxima are very similar (Fig. S5b).

3.2. Towards estimating the length of in vivo T–DC interactions

Having developed and validated our novel method for the
estimation of the average contact duration directly from
imaging data, we next wish to make a first step towards
estimating the duration of interactions between T cells and
DCs in living mice during phase two. We need a large data set
in order to be able to meaningfully compare between
observed and fitted event distributions. We therefore used
the largest MPM data set on cellular interactions that is
currently available (Henrickson et al., 2008). The data
contains observed T–DC interaction lengths for conditions
that vary in the antigen dose presented to T cells. All
experiments lasted 1 h, and the timing of interactions
between cells was judged by studying maximum intensity
projection (MIP) movies with the naked eye. Because MIPs
rather than 3D projections were used, it was required to
define interactions rather stringently: only when T cells show
a deviation towards a DC, or when a DC extends towards a
T cell, this was counted as an interaction.
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To perform our analysis we need to know both the duration
of observed interactions and to which event class each
interaction belongs. The paper in which these data were
originally published (Henrickson et al., 2008) focused only on
the length of the interactions, whichwas reliably determined in
terms of the number of video frames. It was further registered
whether the initiation and termination of each event was
observed or not, but it was not recorded for what reason an
initiation or termination was not observed (due to the limited
temporal or to the limited spatial window of observation).
Nevertheless, we inferred this from the available time informa-
tion, because an estimation of the initiation time of each event
was also recorded. Our reconstruction of the reason for not
observing the termination of an event was therefore imprecise.
This demonstrates that it is more efficient to classify the
observed events immediately during the analysis of the videos.

Henrickson et al. (2008) defined the immune response to be
in phase two during an experiment when the average duration
Fig. 5. Estimating the duration of contacts between T cells and DCs. (a) The estimated
(2008). Fitsweremadeusinga gammadistribution (solid line, bestfit:α≈0.43,β≈7.57)
two lognormal distributions (dashed line, best fit: p≈0.69, µ1≈–1.43,σ1≈1.21, µ2≈2.20
observed distributions (types oo, ot, to, tt, os and ts; see explanation in text) are show
lognormal distributions (solid lines; filled square in lower rightmost panel). The obser
categorized according to the observed average of all interactions (0–15 min, 15–30 min
were combined, and the average true contact durationwas estimated by applying our an
logarithmic scale, suggesting an exponential relationship between observed and true c
of observed events was at least 30 min (half of the imaging
time). Note that this average involves observed rather than true
interaction lengths, i.e., all nine event classes are lumped
together. We combined data (excluding so, st, and ss events for
reasons as explained above) from all experiments where the
immune responsewas inphase two according to this definition,
and applied our method in order to estimate the true
distribution of contact times in phase two.

In order to reconstruct the true distribution from the
experimental data, we need to choose an underlying distribu-
tion for the analysis. As explained before, we tried several
distribution types to see whether results depend on this choice
(gamma distribution, lognormal distribution, and the sum of
two lognormal distributions). Thus, for each of these choices,
we found the best fitting true distribution (Fig. 5a). For all three
cases the integrals in Eqs. (2a)–(2g) can be solved analytically
(see Supporting material, section “Observed contact time
distributions”). Our analysis predicted an average contact
distribution of contact duration in the “phase two” data from Henrickson et al.
, a lognormal distribution (dotted line, bestfit: μ≈–0.50,σ≈1.83), and the sumof
,σ2≈0.59). Note the logarithmic scale of the vertical axis. (b) The experimentally
n in histograms along with the maximum likelihood fit using the sum of two
ved contact time (w′) is on the horizontal axis. (c) Each MPM experiment was
, 30–45 min, or 45–60 min). The data points from experiments in each category
alysis (using a lognormal distribution as a basis). Note that the vertical axis has a
ontact time.
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duration of, respectively, 3.26 h (95% CI of themean 2.84–3.78),
3.27 h (95% CI of themean 2.84–3.78), and 3.28 h (95% CI of the
mean 2.31–3.78) given these three distribution types. Although
the CIs of themeanare relatively narrow, the truedistribution is
predicted to be rather broad (independent of the underlying
distribution g(x), Fig. 5a). Further, as expected fromour analysis
of artificial contact data, the estimated average contact duration
hardly depends on the chosen distribution type g(x), i.e., is very
robust. The shortcut approach to estimate the average contact
duration (based on the number of conjugates present and on
the number of initiations and terminations observed per hour)
gives a consistent, approximately equal result of 3.42 h (95% CI
of the mean 3.00–3.99). Although the estimated average
appears robust, the observed and fitted event distributions
exhibit some clear mismatches (Fig. 5b). According to our
derivation of the event distributions, the to, ot, os, and ts
distributions should all decline with the observed contact
duration, independent of the underlying distribution g(x) (see
for instance Fig. 2d). However, this is not the case in the
experimental data.

Considering the deviations between expected and ob-
served event distributions, the average contact duration
predicted by our analysis should be viewed as a first attempt
of refining our knowledge of contact times during phase two.
Fig. 6. Deviations between experimental contact data and expectation. (a–d) The
(d) events combined per time interval of 6 min. (e) The number of observed conju
multiple experiments exhibiting phase two behaviour according to the definition b
To also give a first impression of how observed contact
duration translates into true contact duration in the experi-
mental data set of T–DC interactions, for each experiment in
the entire data setwe classified the data in one of four possible
categories (according to the average observed duration, 0–
15 min, 15–30 min, 30–45 min, or 45–60 min). For each
categorywe subsequently predicted the true average duration
of T–DC contacts by applying the presented method. These
averages are, respectively, 8.3 min, 46.7 min, 3.03 h, 20.41 h
(Fig. 5c). It should be noted that the latter estimate
is unreliable due to its very large 95% confidence interval
(8.38–∞ h). Indeed, this wide confidence interval includes the
time period that phase two was estimated to last in entirety
(approximately 12 h) by imaging at different time points
(Mempel et al., 2004; Miller et al., 2004a) (though this was
done atonly oneparticular antigen concentration). Again, these
estimates should be viewed only as an initial attempt to
investigate the relationship between observed and true contact
time. Nevertheless, a qualitative, important conclusion from
this analysis is that a small increase in observed average contact
time leads to a dramatic, approximately exponential, increase in
the true average contact time. This implies that there could be a
lot of variation between experiments that are currently
designated as being in “phase two”.
frequency of observed initiation (a), termination (b), entry (c), and leaving
gates present at each moment of experimental time. In all panels data from
y Henrickson et al. (2008) (see main text) are combined.
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We wanted to build up further understanding into what
causes the deviations between the experimentally observed
and the expected event distributions. Therefore, we plotted
the number of conjugates for which initiation, termination,
entry, or leaving was observed over the experimental time
course of 1 h (Fig. 6; compare Fig. S6 for simulation results).
These are all expected to be flat distributions (considering a
homogeneous distribution of conjugates and circumstances
that remain constant over time). However, initiation events
(Fig. 6a) and entry events (Fig. 6c) are observedmore often at
the beginning than at the end of an experiment. Another
deviation is present in the exit events, whose observation
becomes more likely over the course of an experiment (Fig.
6d). Note that near the end of the experiments a sudden, large
increase in observed exit events occurs. We suspect that part
of these events has been classified as a conjugate moving out
of view, while in reality the end was not observed due to the
limited time window (see classification procedure described
above). Although we cannot correct for this potential caveat
completely, we investigated what would be the effect on the
predicted average contact time when the late-occurring exit
events are assumed to have ended due to the limited time
window instead. This “correction” did not affect the predicted
average contact duration (3.26 hours (95% CI of the mean
2.80–3.79 hours), 3.27 hours (95% CI of the mean 2.83–
3.84 hours), and 3.28 hours (95% CI of the mean 1.79–
3.80 hours), and 3.44 hours (95% CI of the mean 3.00–3.95)
for gamma distribution, lognormal distribution, the sum of
two lognormal distributions, and the shortcut approach,
respectively). Finally, other evidence for a time-dependence
of the dynamics comes from studying the total number of
conjugates observed at each time point (Fig. 6e). This is
expected to remain constant over time, yet most conjugates
are observed in the middle of the experiments (around the
time point 20 min).

How can the presence of these deviations from expectation
be explained? Most likely, multiple factors play a role. One
obvious issue that may contribute to the found deviations are
observation biases. It may for instance be difficult to pick up
certain events in the beginning or by the end of an experiment.
Furthermore, the stringent definition of interactions that is
required because of the use of MIPs rather than 3D projections
(i.e., the requirement for deviation of T cell trajectories towards
DCs, or DCs extending towards T cells), could lead to biases. In
particular, one might miss interactions of up to a few minutes
because T cells could walk along a DC in a relatively straight
manner for some time before the contact terminates. Hence,
this could explain why in the experimental data the ot, to, os,
and ts event distributions have lower numbers of observed
events for observation times (w′) of up to several minutes than
expected on the basis of our derivations.

Probably one of the most important factors giving rise to the
found deviations is related towell-known, but rarelymentioned,
technical imaging issues such as small tissue drift and tissue
swelling as these both change the part of the lymph node that is
being imaged. We considered a spatially homogeneous distribu-
tion of (cells and) conjugates leading to a constant rate of entry
and leaving of contacting cells. We needed to consider that
scenario to be able to derive the complex relationship between
true contact timedistributionandexpectedeventdistributions at
all. In reality, the cellular distribution in lymph nodes is quite
heterogeneous (e.g., newly arrived, adoptively transferred DCs
gather around high endothelial venules (Bajénoff et al., 2003;
Katakai et al., 2004)). In imaging experiments, one usually
searches for a region of interest, i.e., where an appropriate
number of T cells and DCs are present (neither toomany nor too
few).When such relatively dense areas are initially located in the
middle of the imaged volume, then small tissue drift will entail a
non-constant rate of leaving and entry of conjugates. This could
explain the change in thenumberof exit andentryevents (Fig. 6c
and d) in the course of the experiment (i.e., the observation that
the rate of leaving, δ, is time dependent). As a consequence, this
canalso explain that the frequencyof experimentallyobservedos
and ts events does not decline with w′ according to the
expectation, but contains a peak at high w′ values. Considering
that a significant part of the os and ts eventswould have been oo,
ot, to or tt events if tissue driftwere absent from the experiments,
the model predictionmay not be as bad as it seems at first sight.

To evaluate whether tissue drift is indeed an important
factor leading to a poor fit of these experimental contact data,
we selected a subset of the experiments that had relatively
limited tissue drift.We visually inspected the videos of all phase
two experiments, and classified them into five categories
varying from low to high tissue drift. We further quantified
the amount of tissue drift for each of these experiments by
studying the drift of DCs that appeared to be relatively stable
(e.g., because of attachment to the network of fibroblastic
reticular cells (Lindquist et al., 2004; Sixt et al., 2005)). Out of 33
phase two experiments, a subset of 9 experiments appeared to
have the lowest tissue drift in terms of each of those measures
(for further details see the legend of Fig. S7). The majority of
experiments in this subset also ranked among the phase two
experiments that had the most stable number of conjugates
over time (in terms of their coefficient of variation, not shown).
This correspondence implies that tissue drift is an important
factor causing a non-constant rate of leaving/entry. Applying
our method to estimate the contact time distribution to this
small subset resulted in an estimated average contact time of
4.95 h (95% CI of themean 1.72–6.74). Note that the confidence
interval is now quite broad because the estimate is based on a
limited number of data points, and that the estimate for the
entire phase two data set lies within this confidence interval.
The shortcut approach gives an estimated contact time of 5.23
hours (the 95% CI of the mean is narrower: 3.98–7.06 hours).
Importantly, the quality of the fit of the experimental subset
improved markedly in comparison with that of the entire data
set of phase two experiments (compare Fig. S7 with Fig. 5b). In
particular, the peaks that were previously present in the os and
ts event distributions (Fig. 5b) are absent in the subset of
experiments with limited tissue drift (Fig. S7). Hence, tissue
drift is an important factor leading to the mismatches between
model prediction and these experimental data. In the discussion
we propose ways to minimize the problems associated with
tissue drift for analyzing contact data in future experiments.

Another mismatch between model and reality is that in
the model we needed to consider a true distribution that does
not change over time. This is obviously not true in reality, and
onemay indeed argue that over timemore andmore cells will
transit to phase two. Furthermore, the DC antigen load is
expected to decay rapidly in these experiments (Henrickson
et al., 2008; Zheng et al., 2008), and this may also affect the
number of initiations and terminations of contacts that
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occurs. However, the data suggest that these effects remain
relatively limited in comparison to the discrepancy caused by
tissue drift: The observed event distributions for ot and to
events are not dramatically different which would otherwise
be the case (Fig. 5b). Furthermore, more and more cells
transiting to phase two would entail a steady increase in the
total number of observed conjugates over time. Although
there is indeed an initial increase in the total number of
observed conjugates at each time point (Fig. 6e), at later times
this number drops again, most likely as a consequence of the
increase in the number of exit events due to tissue drift.
However, note that in the experimental subset that has
limited tissue drift, there is a clear difference between to and
ot event distributions (Fig. S7), i.e., some cells may not yet
have entered phase two in that subset. Thus, in order to
estimate the true contact time distribution, future experi-
ments that minimize the effect of tissue drift should also be
timed more “in the middle” of phase two (see Discussion).

4. Discussion

We presented a method to directly estimate from MPM
contact data how long interactions between immune cells really
last. The analysis uses asmuch information aspossible, i.e., takes
into account that conjugates can drift out of the field of view
during imaging, and that initiation and termination is often not
observed because the experiment had not yet started or ended
already. We also presented a “shortcut approach”which can be
used to estimate only the average contact time rather than the
entire true contact time distribution. Both approaches were
validated on contact data generated by in silico simulations
(Beltman et al., 2007a,b) (for which the true contact time
distribution canbederived from long simulations). The shortcut
approach is straightforward to perform and is a significant
improvement over the lumped average observed contact time
that is often calculated for experimental contact data. Still, care
should be taken because one cannot demonstrate that the fit of
the data, and thus the estimate, is good. Using the analyses
subsequently on a large MPM experimental data set (Henrick-
son et al., 2008), we here take a first step towards determining a
more quantitative estimate on the duration of T cell–DC
interactions in living tissues during phase two.

Importantly, our analysis revealed clear deviations be-
tween expected and observed event distributions that are at
least partially due to experimental tissue drift. This leads to a
time-dependent rate of leaving, distinct from the constant
rate of leaving we needed to consider in our model (this was
required to be able to determine the complex relationship
between observed and true contact time at all). Therefore, in
order to improve the fit between model and experimental
data, the impact of tissue drift on cellular interaction data
needs to be minimized in future experiments.

The most important step in preventing tissue drift from
making the rate of leaving time dependent is to increase the size
of the imaged volume: The field of view is usually rather large in
the x and y direction, but is only a relatively thin slice in the z
direction (usually approximately 50 μm or less). When con-
jugates are clustered in space, small tissue drift thus easily leads
to the relatively sudden disappearance of entire clusters via the z
dimension.We expect that increasing the imaged volume in this
dimensionwould significantly diminish the effect of tissue drift.
A volumewith a thickness of just over 100 μm has been imaged
before (Allen et al., 2007; Gardner et al., 2008), and would be a
great improvement. Another way to assist in circumventing the
effect of tissue drift is to choose the exact region of imaging in a
more varied manner than is generally done. In particular, we
expect that it would help to choose the initial location of the
regions where conjugates are clustered in some experiments in
the centre, and in others more at the border of the imaged
volume. As a result, the time point around which most
conjugates drift away would differ for each experiment, and
combining all data points would lead to a leaving rate that is
approximatelyconstantover time.Note thatourmethodcanalso
be applied to estimate the duration of interactions between
other immune cell types. When cellular interactions are quite
motile, such as those between B and T cells (Okada et al., 2005;
Allen et al., 2007; Mempel et al., 2006), we expect the active
movement of conjugates to be a more important factor in
determining when a conjugate leaves than the apparent move-
ment due to small tissue drift. Thus, the rate of leaving is likely to
be approximately constant over time in this case.

The concept of a true distribution of contact times we
considered in this paper is a simplification of T cell–DC
interactions occurring during an immune response. Because
the contact time distribution in vivo changes over time (due to
the different phases), each estimated true distribution should
be viewed as an approximation of reality comparable to the
concept of a “running average”. Hence, performing future
experiments as much as possible “in the middle of” phase two
seems the best approach to get a good approximation of the
true contact time in this phase. For instance, if phase two at a
particular antigen concentration and experimental setting lasts
approximately from 8 until 20 h after antigen administration,
then it is best to image around 14 h. In the data set we analyzed
in this paper, an alternative approach was taken (due to the
originally different goal of the experiments by Henrickson et al.
(2008), which was to assess the time to transition from phase
one to phase two for various doses of peptide): An experiment
was considered to be in phase two when the average observed
interaction time was at least half of the imaging time, i.e.,
30min (Henrickson et al., 2008). Onemight argue that, despite
the synchronization of cells at the beginning of the experiment
by the administration of an antibody to L-selectin (which
prevents further entry of T cells into LNs), at this point many
cellsmight effectively still be inphaseone. Indeed, a difficulty in
studyingphase two is thatone tends to thinkabout it in termsof
individual cells, but the measurement takes place on the
population level. This is a fundamental problem thatwill persist
until imaging techniques are able to follow individual cells for
their entire journey through the LN. Our method of analyzing
contact durations is also fundamentally unable to solve this
problem: it can estimate the distribution of the entire
population of cells, but it cannot reconstruct the history or
“future” of individual cells.

Another inherent limitation of the method we developed
is that, although it can provide us with a rigorous estimate of
the average duration of cellular interactions, the prediction of
the entire distribution of interactions is not necessarily
accurate. The latter is particularly the case when the tail of
the distribution is longwith respect to the time of observation
(for instance, the true distribution peaks at 3 h but imaging
occurs for only 1 h). Because no additional information on the
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contacts lasting longer than the imaging period is available,
multiple combinations of distribution parameters could
render a fit with comparable likelihood. Therefore, the
distribution fitted in such a scenario should be interpreted
as indicative rather than exact. An overall measure of the
distribution, such as the average contact duration in this case,
is much more robust than the fit of the entire distribution or
than the fitted parameter combination (De Boer et al., 2003;
Gutenkunst et al., 2007). In order to get a more detailed
impression of the entire distribution of T–DC interaction
times in phase two, imaging experiments lasting longer than
1 h will be essential. Note that a “too long” period of imaging
could also lead to wrong estimates because the immune
system could again be changing its behaviour (that is, move
on to “phase three”). Therefore, if current technical limita-
tions can be overcome, two to four hours of imaging probably
would represent a golden mean. Although technical limita-
tions may not allow for huge steps in terms of for instance
increased imaging time, it is important to realize that every
bit of improvement will help to obtain better estimates of the
true contact time distribution.

Obtainingmore detailed andmore quantitative knowledge
about the true distribution of interaction times distribution
and/or the average contact time during phase two is
important for several reasons. First, the various molecular
steps that are involved in the activation of T cells during their
interactions with antigen-presenting cells, for instance with
respect to the formation of the immunological synapse, are a
subject of intense investigation. Having good knowledge of
something as elementary as the duration of cellular contacts
can be viewed as a prerequisite for the interpretation of such
lower-level signalling processes. Also, the duration of cellular
interactions that is required for T cell activation sets limits on
how fast an immune response can develop. Furthermore, in
order to compare different experimental settings, it becomes
difficult to find differences based on the average observed
contact timewhen the average true contact duration between
cells is very long. This is because the discriminating ability of
this lumped average decreases for high true contact times
(Fig. 5c). Finally, a comparison between experiments that are
performed in different settings (e.g., size of imaged volume,
duration of experiment), is impossible if one does not apply a
quantitative analysis. In order to improve the potential for
comparison between experiments from different laboratories,
and for instance of the behaviour of CD4+ and CD8+ T cells, it
is further of paramount importance to clearly present the
precise protocol used to measure contact duration in the
methods section of papers investigating individual cellular
contacts, which is currently not the case (see e.g. Mempel
et al., 2004, 2006; Miller et al., 2004a,b; Hugues et al., 2004,
2007; Mrass et al., 2006; Tadokoro et al., 2006; Garcia et al.,
2007; Celli et al., 2007; Allen et al., 2007; Schwickert et al.,
2007; Guarda et al., 2007; Henrickson et al., 2008; Scholer
et al., 2008; Gardner et al., 2008). It would also be very useful if
the analysis of contact data would be (partly) automatized in
the future, as is already the case for the tracking of cell
movement. Note however that automatic detection methods
may also introduce biases.

MPM imaging is increasing our understanding of the
development of immune responses. Videos of travelling and
interacting immune cells give an intuitive idea about the
functioning of our immune system. A wealth of cellular
motility and interaction data results from the analysis of
these videos.MPM imaging is at itsmost powerful when these
variables can be correlated with functional readouts of
immune responses. However, it is of vital importance that
the motility and interaction data are analyzed thoroughly. As
much information as possible should be extracted from the
experimental data, and a comparison with theoretical expec-
tations is required to pinpoint, understand, and repair or
circumvent potential biases in the data. This calls for the
further development of novel techniques of analysis. Experi-
mental work that goes hand in hand with rigorous analysis
andmodelling represents themost efficient way to proceed in
the field of MPM imaging.
5. Box 1: recipe to estimate true contact time distribution

Perform the following steps to obtain an estimate for the
true distribution of contact duration:

1. Acquire the experimental contact data according to a well-
defined protocol. For each observed interaction, report the
initiation and termination time of observation, aswell as to
which class the observation belongs (oo, ot, os, to, tt, ts, so,
st, or ss). Also report the imaging duration for each
observation (this could vary between experiments).

2. Combine the data from multiple experiments, keeping
the event classes of the observations intact.

3. Examine the data for a time-dependence of the dynamics:
Plot the number of conjugates present at each moment in
time, and the number of entry, exit, initiation, and
termination events versus experimental time. In the
ideal case, all these graphs should approximate flat,
horizontal lines (see Fig. S4). Furthermore, the number of
events in class ot should be approximately equal to the
number of events in class to. If any of these checks does
not conformwith the expectation, try to understandwhat
causes it and if possible try to repair for the artifact.

4. Decidewhich event classes youwant to use for estimating
the true distribution. If you do not trust some of the event
classes on the basis of the previous checks for artifacts,
discard the data from these event classes altogether.

5. Choose distribution types (e.g., lognormal distribution)
that are to be used in the maximum likelihood procedure.
Try multiple distribution types to check whether results
depend on it.

6. Given a certain parameter combination of the chosen
underlying true distribution, calculate for each data point
the probability density of its occurrence according to
Eqs. (2a)–(2f) corrected such that the total number of
used events sums up to one. See the Supporting Material
for an example calculation of a single contact data point,
and for analytical solutions to Eqs. (2a)–(2f) for the cases
of lognormal and gamma distributions.

7. Per parameter combination, calculate the likelihood (or
log-likelihood) of the entire data set, by multiplying the
probability densities for each individual observation (or
by adding the logarithm of the probability densities).

8. Find the parameter combination that results in the
maximum (log)-likelikood using an optimization
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algorithm. To achieve this, the algorithm repeats the
previous two steps multiple times.

9. Plot the observed event distributions along with the
expected event distributions according to the fitted
parameter combination, and see whether this looks
reasonable. Note that this is not very meaningful when
there is a small number of data points.

10. Plot the predicted true distribution and calculate dis-
tribution parameters such as the mean contact duration.

11. Determine 95% CIs for the desired measures (e.g., mean
contact time) using bootstrapping. That is, generate new,
random data sets by drawing events from all used data
points. Observations remain in their original event class,
and can be sampled multiple times (i.e., with replace-
ment). The new data sets contain an equal number of
points as the original set, but for each event class the
number can be different. Repeat the maximum likelihood
procedure for each generated data set, and plot distribu-
tions of the calculated measures.
6. Box 2: recipe for shortcut to estimate true mean contact
time

Perform the following steps to use our shortcut approach
to obtain an estimate for the true average contact duration:

1. Perform the first three steps of Box 1. These represent
acquisition of the data and basal checks on whether the
simplifications underlying this approach are justified in the
data set at hand.

2. Use the first and final time points of observation for each
event to calculate the total number of conjugates that are
present at each time point in the experiment. Note that this
could also be determined directly from the videos, i.e.,
without classifying into events. Next calculate the average
number of conjugates that are present at any moment in
time, i.e., sum up the totals at each time point and divide by
the number of time points (we call this ―nc).

3. Determine how many conjugates one sees initiating (ni)
and how many one sees terminating (nt) during the
experiment. This can be determined directly from the
event classes: the number of initiating events equals the
total number of events in classes oo, ot, and os, whereas
the number of terminating events equals the total number
of events in classes oo, to, and so. Alternatively, ni and nt
could be determined directly from the videos, although
one should be careful to include only initiations and
terminations, and not entries and exits.

4. An estimate for the average contact duration can be
calculated from the formula x̄=2T ―nc/(ni+nt), where T
is the time window of imaging. If T differs between
experiments, one can perform the described procedure for
each subset of experiments of equal duration. An overall
average can then be obtained by weighting each subset
estimate by the average number of conjugates (―nc) present
in the respective subsets.

5. Determine 95% CIs for the mean contact time using
bootstrapping. That is, generate new, random data sets as
explained in the last step of Box 1. Repeat the shortcut
approach for each generated data set.
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