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This is a short tutorial summarizing the math underlying Tilman diagrams [3] using a model with
mass-action consumption terms. We will cover sketching consumer nullclines in a space spanned up
by resources, impact vectors establishing the existence of a steady state, and Routh-Horwitz criteria
testing the stability of the steady state.

1 Nullclines

Consider the following model with two resources, Ri, and two consumers, Ni,

dR1

dt
= f1(R1)− c11N1R1 − c21N2R1

dR2

dt
= f2(R2)− c12N1R2 − c22N2R2

dN1

dt
= c11N1R1 + c12N1R2 − δ1N1

dN2

dt
= c21N2R1 + c22N2R2 − δ2N2

where the production of the resources could be logistic growth, a source death model, or anything
else, e.g.,

fi(Ri) = riRi(1−Ri/Ki) or fi(Ri) = si − diRi ,

where the latter has carrying capacities defined as Ki = si/di. This is a phenomenological model with
”additive” resources, mass action consumption, and no parameters for the conversion of resource into
consumer.

In a Tilman diagram one draws the consumer nullclines in the space spanned up by the resources. We
therefore ignore the dRi/dt equations and solve the nullclines from the consumer equations:

dN1

dt
= 0 ↔ N1 = 0 or R2 =

δ1

c12
− c11

c12
R1 = R∗12 −

c11

c12
R1

dN2

dt
= 0 ↔ N2 = 0 or R2 =

δ2

c22
− c21

c22
R1 = R∗22 −

c21

c22
R1

where R∗12 is the minimum density of the second resource required for growth of the first consumer,
and R∗22 is the minimum density of the second resource required for growth of the second consumer.
These are straight lines with slopes − c11

c12
and − c21

c22
, respectively (see Fig. 1a). The consumers expand

above their nullcline, and a steady state is only possible if these nullclines intersect. The location
of this intersection point (R̄1, R̄2) can be computed by solving R1 = δ1

c11
− c12

c11
R2 from dN1/dt = 0

and substituting that into dN2/dt = 0, i.e., R̄2 = c21δ1/c11−δ2
c12c12/c11−c22

, and then computing R̄1 using this

expression for R̄2. Note that the steady states of the resources are determined by the parameters of
the consumers only.

One can add more consumers to this diagram because the consumer equations are independent from
each other, i.e., for a third consumer species the nullcline would be R2 = δ3

c32
− c31

c32
R1 (see Fig.

1b). The three nullclines in Fig. 1b intersect in three points, of which only the intersection where
dN1/dt = dN2/dt = 0 (marked as (R̄1, R̄2)12) can be a steady state. The other two points are either
located above the dN1/dt = 0 nullcline, or above the dN2/dt = 0 nullcline, implying that N1 or
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Figure 1: Tilman diagrams with two (a) or three consumers (b). Because each consumer nullcline is
independent of the resource equations and the other consumer equations, one can plot many consumer
nullclines in a single diagram. The nullclines intersect the axes at the minimum resource densities
required for growth of the consumer, i.e., they all run from R∗i2 on the vertical axis to R∗i1 on the
horizontal axis. Two nullclines can only intersect when each consumers specializes on a particular
resource, i.e., if R∗i2 < R∗j2 then it is required that R∗j1 < R∗i1 for any pair i and j. Finally note that
generically one only expects intersections between pairs of nullclines (see Panel b), i.e., maximally two
consumers can be maintained at steady state on these two resources. This figure was made with the
model TilmanLV.R

N2 is expanding in these points. Finally, note that an intersection point can only be a steady state
when the production of the resources, f1(R1) and f2(R2), allow for the required resource densities,
(R̄1, R̄2). To test this one can plot the point where both resources are at their carrying capacity, and
this point should be located above an intersection point for it to be a potential steady state. To know
the carrying capacity, one needs to specify the growth functions of the resources, however.

2 Impact vectors

The fact that the nullclines intersect in Fig. 1a tells us that dN1/dt = dN2/dt = 0 at these resource
densities, but does not guarantee that this intersection corresponds to a steady state where also
dR1/dt = dR2/dt = 0. A first requirement is that the carrying capacities of the resources (denoted
by the circle in Fig. 2a), have to be located above the intersection point, otherwise the required
resource densities are larger than their maximal densities. However, this still does not guarantee that
dR1/dt = dR2/dt = 0 in the intersection point. Finally, even if this were a steady state, the diagram
would fail to inform us about the stability of that state. Tilman [3] developed two procedures to test
for (1) the existence of the steady state, and (2) its stability.

To address whether or not the intersection point (R̄1, R̄2) corresponds to a steady state Tilman studied
the local change of the resource densities by depicting the vectors reflecting the local consumption
rates, and the local growth of the resources, R1 and R2. These vectors should be able to add up
to zero such that dR1/dt = dR2/dt = 0 in the intersection point. The impact of the first consumer
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Figure 2: Tilman diagrams with impact vectors. The colored vectors depict the local impact of the

consumers on the resources, i.e., the green arrow is a vector−
(c11R̄1

c12R̄2

)
N1 reflecting the local consumption

of the first consumer, and similarly the orange arrow is the vector −
(c21R̄1

c22R̄2

)
N2. The black vector

is the local growth of the resources,
(f1(R̄1)
f2(R̄2)

)
, for which we here define f1(R1) = s1 − d1R1 and

f2(R2) = s2 − d2R2. Since in Panel (a) the direction of the black resource production vector falls
between the two colored consumption vector, the three vectors can add up to zero (for appropriate
values of N1 and N2), and allow dR1/dt = dR2/dt = 0. In Panel (b) we have decreased c11, which
increases R∗11, and changes the location of the intersection point, (R̄1, R̄2), and the direction of the
local vectors such that the black growth vector can no longer be balanced by the two consumption
vectors. The open circles denote the carrying capacities of the resources, and because the two resources
have similar dynamics, the black vectors point in the direction of these open circles. This figure was
made with the model TilmanLV.R

on the resources is taken from its consumption terms, i.e., c11N1R1 and c12N1R2, and hence would

be the green vector −
(c11R̄1

c12R̄2

)
N̄1 pointing left and downwards from the point (R̄1, R̄2), where we have

chosen an arbitrary length because N̄1 is unknown. Similarly, the impact of second consumer on the

resources is the orange vector −
(c21R̄1

c22R̄2

)
N̄2, pointing left and downwards, and of arbitrary length. The

black vector in Fig. 2 reflects the local growth of the resources,
(f1(R̄1)
f2(R̄2)

)
, and points in the opposite

direction (i.e., to the right and upwards). (If the growth rates of the resources have identical time
scales this vector points towards the steady state of the resources in the absence of consumers, i.e.,
the open circles in Fig. 2 [3]). Since the length of the consumption vectors depends on the consumer
densities, the three vectors in Fig. 2a can sum up to zero for appropriate values of the consumers,
which allows the intersection point to be a steady state. After decreasing the niche specialization, by
decreasing c11 in Fig. 2b, this is no longer possible because the direction of the black growth vector
is no longer in between the two consumption vectors. Summarizing, the conditions for two consumers
to co-exist in steady state with two resources are stronger than the minimum requirements on the R∗

values delivering intersection points (see Fig. 1), their specialization on a single resource has to be
even stronger.
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3 Stability

To study the stability of the steady state of these models Tilman [3] computed the the largest eigenvalue
of the Jacobian of the 4-dimensional system. This was feasible because this Jacobi matrix contains
many zero elements. For instance, the Jacobian of a model with resources maintained by a source,
i.e., fi(Ri) = si − diRi, can be written as

J =

∂R1R
′
1 . . . ∂N2R

′
1

...
. . .

∂R1N
′
2 . . . ∂N2N

′
2

=


−d1−c11N̄1−c21N̄2 0 −c11R̄1 −c21R̄1

0 −d2−c12N̄1−c22N̄2 −c12R̄2 −c22R̄2

c11N̄1 c12N̄1 c11R̄1+c12R̄2−δ1 0

c21N̄2 c22N̄2 0 c21R̄1+c22R̄2−δ2


where the two ∂RjR

′
i elements are zero because the resource equations do not contain the other

resource, and the two ∂NjN
′
i elements are zero because the consumer equations do not contain the

other consumer. Because the two diagonal ∂NiN
′
i = ciiR̄i + cijR̄j − δi elements correspond to the per

capita growth rates of the consumers, which is zero at steady state, this Jacobian can be simplified
into a matrix with the same structure of signs and zeros,

J =


−ρ1 0 −γ11 −γ21

0 −ρ2 −γ12 −γ22

φ11 φ12 0 0
φ21 φ22 0 0

 ,

where ρi elements define the feedback of the resources onto themselves, the γij elements define the
per capita amounts of resources consumed, and the φij terms define the contribution of resources to
the growth of the consumer populations at steady state [3]. The trace of this matrix, −(ρ1 + ρ2), is
negative. The characteristic equation of this Jacobi matrix can be obtained with Mathematica, and
is defined as

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 = 0 ,

where
a3 = ρ1 + ρ2 , a2 = φ11γ11 + φ21γ12 + φ12γ21 + φ22γ22 + ρ1ρ2 ,

a1 = φ12ρ1γ21 + φ22ρ1γ22 + φ11γ11ρ2 + φ21γ12ρ2 and

a0 = (γ11γ22 − γ12γ21)(φ11φ22 − φ12φ21) .

The steady state will be stable when all four solutions of the eigenvalues in the characteristic equation
are negative. Fortunately, there is a general method to test this without having to solve this fourth-
order polynomial. This is the so-called Routh-Horwitz stability criterion on the n coefficients, ai,
of an nth order polynomial [1, 3]. One of the Routh-Horwitz criteria is that all parameters, ai,
in the characteristic equation should be positive (or all negative, as one can multiply the equation
with −1). Thanks to the many zeros in the Jacobi matrix we here have a simple situation where
a3 > 0, a2 > 0, a1 > 0, and only a0 can be negative. Hence testing a0 > 0 is sufficient to establish the
stability of the steady state at which the four species co-exist.

We have seen above that this 4-dimensional steady state can only be present when the two consumers
have a sufficiently different diet (see Fig. 2a). Therefore consider a case where consumer one specializes
on resource one, and consumer two on resource two, i.e., c11 > c12 and c22 > c21. Checking the sign
of the first term of the a0 equation we see that

(γ11γ22 − γ12γ21) = (c11R̄1c22R̄2 − c12R̄2c21R̄1) > 0 ↔ c11c22 − c12c21 > 0 ,

which is true because we consider the case where c11c22 > c12c21. For the same reason we observe for
the second term of the a0 equation

(φ11φ22 − φ12φ21) = (c11N̄1c22N̄2 − c12N̄1c21N̄2) > 0 ↔ c11c22 − c12c21 > 0 .
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Figure 3: An unstable steady state. In the Tilman diagram in Panel (a) the colored vectors depict
the local impact of the consumers on the resources, and the black vector reflects the local growth of
the resources (as in Fig. 2). Since the direction of the black resource production vector falls between
the two colored consumption vectors, the three vectors can add up to zero, allowing this point to be
a steady state where dR1/dt = dR2/dt = 0 (like in Fig. 2a). However, because each species benefits
most from the resource it consumes the least, i.e., c11 > c21 but α11 < α21 and c12 < c22 but α21 > α22,
this steady state corresponds to a saddle point. In Panel (b) we study the same system by making the
quasi steady state assumption, dR1/dt = dR2/dt = 0, and depict a phase space spanned up by the
two consumers. This confirms that the non-trivial point is a saddle point and that the two ”carrying
capacities”, κ1 and κ2, of the consumers form two stable points on the horizontal and vertical axis,
respectively. The black lines in Panel (b) are trajectories, starting at the regularly spaced bullets,
together forming a phase portrait. This figure was made with the model TilmanLV.R.

Since both terms are positive we conclude that a0 > 0 which fulfills this Routh-Horwitz criterion
Thus the steady state is expected to be stable. We conclude that if these two consumers have suffi-
ciently different niches, i.e., when their nullclines intersect, and the production vector can balance the
consumption vectors (see Fig. 2a), the 4-dimensional steady state is expected to be stable.

Although we here considered the case where the resources are maintained by a source, little changes
when we define replicating resources by replacing fi(Ri) = rjRj(1−Rj/Kj), because (1) the Tilman
diagram remains the same, and (2) in the Jacobian only the upper two diagonal elements change into

ρ1 = r1 −
2r1

K1
R̄1 − c11N̄1 − c21N̄2 and ρ2 = r2 −

2r2

K2
R̄2 − c11N̄1 − c21N̄2 ,

both of which should remain negative. Hence, the Routh-Horwitz criteria remain the same and the
steady state should be stable.

3.1 Resource requirements

In the model considered above the two resources were equally nutritious for both consumers. We
will see below that steady states can become unstable when species eat most of their least nutritious
resource. Let us therefore introduce four conversion factors, αij , defining the contribution of the
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amount of resource consumed, cijRi, to the growth of the consumers,

dN1

dt
= α11c11N1R1 + α12c12N1R2 − δ1N1 ,

dN2

dt
= α21c21N2R1 + α22c22N2R2 − δ2N2 .

We obtain an Jacobian that is quite similar to the one derived above, as only the four ∂RN
′ elements

change: (
∂R1N

′
1 ∂R2N

′
1

∂R1N
′
2 ∂R2N

′
2

)
=

(
α11c11N̄1 α12c12N̄1

α21c21N̄2 α22c22N̄2

)
=

(
φ11 φ12

φ21 φ22

)
.

The full Jacobian therefore has the same signs and zeros as the previous matrix, which means that
the same a0 > 0 criterion remains a sufficient condition for stability.

Again consider a case where consumer one specializes on resource one, and consumer two on resource
two, i.e., c11 > c12 and c22 > c21. Like above the first term of the a0 > 0 criterion, γ11γ22 > γ12γ21,
remains satisfied. However, the sign of the second term will only be positive when,

φ11φ22−φ12φ21 = α11c11N̄1α22c22N̄2−α12c12N̄1α21c21N̄2 > 0 ↔ α11c11α22c22−α12c12α21c21 > 0 ,

which fails to be true when the conversion rates, αij , are not concordant with the consumption rates,
cij . For instance, if species one (that consumes most of resource one) would benefit most of resource
two, i.e., if α11 < α12, and if species two would benefit most of resource one, i.e., if α22 < α21, this term
can become negative. Whenever φ11φ22 − φ12φ21 < 0 (and γ11γ22 − γ12γ21 > 0), the Routh-Horwitz
criterion a0 > 0 fails, and the steady state is expected to be unstable (see Fig. 3a).

Interestingly, we see that both consumers need to be restricted most by the resource they eat most,
and that the condition a0 > 0 has the biological interpretation that the species can co-exist when
they evolve consumption rates reflecting their resource requirements, i.e., when the φij terms concur
with the γij terms [2, 3]. Intuitively, one can understand that it is destabilizing when a consumer
hardly consumes the resource it is mostly limited by (as an increase in the resource density would
hardly increase its birth rate). This destabilizes the steady state and leads to the “founder controlled”
situations where the initial condition determines which of the consumers survives (see Fig. 3b).

Finally, similar to deriving a graphical Jacobian from a local vector field, one can sometimes estimate
the relative sizes of the φij terms from a Tilman diagram. In Fig. 1a we can see that ∂R1N

′
1 = φ11 >

∂R2N
′
1 = φ12 because a small step to the right lands at a larger distance from the dN1/dt = 0 nullcline

than a small step to the top. Similarly, one can see that ∂R1N2 = φ22 > ∂R2N
′
2 = φ21, which together

provides us with the Routh-Horwitz criterion, φ11φ22 − φ12φ21 > 0, and tells us that the steady state
should be stable. In Fig. 3a this is just the other way around, i.e., φ11φ22 < φ12φ21. A simple rule of
thumb would be therefore be that the dN1/dt = 0 nullcline needs to be steep, whereas the dN2/dt = 0
nullcline should be flat (if R1 is on the horizontal axis, and N1 specializes on R1).
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