
Since the beginning of the twenty-first century it has been 
possible to visualize the dynamic behaviour of immune 
cells in living lymphoid tissues using time-lapse video 
microscopy1–6, whereby fluorescently labelled cells are usu-
ally visualized by two-photon excitation. This has resulted in 
spectacular videos of the in vivo behaviour of, and inter-
actions between, various types of immune cell. Robust 
conclusions from such data require detailed quantitative 
analysis of the position and movement of cells, particularly 
to detect subtle cell migration phenomena. Time-lapse 
imaging experiments are complicated to carry out, and 
the tracking of cell movement from the resulting videos 
is a laborious and error-prone process. In this Review, we 
discuss artefacts that are expected to be present in imaging 
data sets and explain how these can influence the obtained 
results. We propose how data analysis can assist in the 
detection as well as correction of these artefacts. We start 
by reviewing frequently used parameters for analysing cel-
lular motility. Then we provide an overview of potential 
artefacts in data sets, as well as other problems associated 
with the analysis of cell migration and interactions, and 
suggest solutions for these issues.

Overview of common motility parameters
Several motility parameters are frequently used to 
quantitate cell migration behaviour. Such analysis starts 
after the experiments and cell tracking have been carried 
out, so at each time point the location of all cells has 
been estimated.

Plotting tracks. By plotting the trajectories of the tracked 
centres of mass of immune cells over time in two or three 
dimensions, the migratory behaviour of the cell popu-
lation can be qualitatively examined. One option is to  
simply plot the unshifted coordinates of the centres of mass 
in the image volume, possibly overlayed on the acquired 

images of the cells. This can help to see whether the vis-
ualized cells prefer particular regions of the tissue. This 
approach has recently been used to show that mutations 
in signalling lymphocyte activation molecule-associated 
protein (SAP; also known as SH2D1A) cause follicular  
T helper cells to be largely excluded from germinal  
centres and instead reside mainly in the follicular mantle 
of B cell regions7.

The other option is to shift the starting position of 
each individual cell to the same point in space while 
maintaining its orientation (FIG. 1a), allowing one to 
roughly see whether cells are travelling in a preferred 
direction. If all possible directions of migration are 
approximately equally covered, this indicates that motion 
is more or less random on the timescale of the duration 
of the plotted tracks. However, plotting tracks only gives 
a qualitative indication of cell movement.

Speed. One of the most frequently studied migration 
parameters is cell migration speed, and an early finding 
of two-photon imaging of lymph nodes was that T cells 
are activated in several phases that differ in migration 
parameters such as speed5,8. The mean speed over the 
brief interval between two sequential time frames can 
be approximated by dividing the distance the cell trav-
els by the time period between the frames. Because in 
reality a trajectory will not be exactly straight, this is an 
underestimate of the true speed of the cell. The longer 
the time period between the frames, the larger this error 
will be. However, this error remains limited provided 
that the time period between frames is shorter than the 
time period for which cells tend to move in a persistent 
direction. A frequently used parameter that is derived 
from speed is the arrest coefficient, which is the fraction 
of time that a cell is ‘pausing’ (usually defined as having 
a speed less than 2 μm per minute).
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Time-lapse video 
microscopy 
A microscopy technique in 
which sequential static images 
from multiple time frames are 
combined into a video 
displayed at a faster rate than 
the images were acquired.

Two-photon excitation 
A technique by which 
fluorescent markers are excited 
by the nearly simultaneous 
absorption of two photons of 
low energy, resulting in the 
emission of fluorescent light 
that is collected by a detector.

Image volume 
The three-dimensional volume, 
typically in the shape of a box, 
from which emitted 
fluorescence, and thus 
fluorescently labelled cells, 
can be detected.

Analysing immune cell migration
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Abstract | The visualization of the dynamic behaviour of and interactions between immune 
cells using time-lapse video microscopy has an important role in modern immunology. To 
draw robust conclusions, quantification of such cell migration is required. However, imaging 
experiments are associated with various artefacts that can affect the estimated positions of 
the immune cells under analysis, which form the basis of any subsequent analysis. Here, we 
describe potential artefacts that could affect the interpretation of data sets on immune cell 
migration. We propose how these errors can be recognized and corrected, and suggest ways 
to prevent the data analysis itself leading to biased results.
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Motility coefficient
A measure for how fast cells 
displace from their starting 
positions during a random walk 
process. It is identical to a 
diffusion coefficient.

Persistent motion
The phenomenon that cells 
generally travel in relatively 
straight lines on a short 
timescale (usually of minutes).

Mean displacement. To determine the type of loco-
motion of the visualized cell population, researchers 
frequently analyse how the mean displacement of cells 
depends on the time period for which the cells are fol-
lowed. The displacement of a cell is the shortest dis-
tance between the positions at two time points (which 
is distinct from the length of the entire path it has trav-
elled). Typical cell motility can be deduced from a plot 
of the mean displacement versus the square root of time 
(FIG. 1b). If this relationship is linear, it means that cells 
behave as randomly moving objects, and a motility coeffi-
cient can be calculated (see example in REF. 9). However, 
published values of motility coefficients are typically 
underestimated because a correction is required when 
the mean displacement rather than the mean of the 
squared displacements is used in the calculations (see 
Supplementary information S1 (box) and REF. 10).

A faster than linear increase in the mean displace-
ment plot is reminiscent of directed motion. Cells 
exhibit directed motion for typically at least a few 
minutes, which means that on short timescales they 

tend to move in an approximately straight line (in a 
persistent direction). When such directed motion is 
also observed on long timescales this means that the 
cells displace more than expected for a random walk. 
One factor that could cause directed motion is if the 
immune cells were to follow a chemokine gradient.  
A slower than linear increase of the mean displacement 
plot means that the cells are somehow confined, for 
example because interactions with other cell types keep 
them within a specific region. It was recently suggested  
that thymocytes exhibit such confined behaviour  
during negative selection in the medulla, but not in the 
cortex, of the thymus11.
Although the mean displacement plot is a useful tool to 
investigate the type of motility involved, the underly-
ing mechanism of migration cannot be inferred from it. 
This is because multiple underlying micro-processes can 
give rise to the same or very similar mean displacement 
plots12–14. For example, viewing the migration of T cells 
in lymph nodes as consisting of randomly oriented steps 
of fixed duration and speed10 or as persistently moving 
cells that manoeuvre through a densely packed organ 
with highly variable speeds15 results in similar mean  
displacement plots.

Confinement ratio. Sometimes researchers are inter-
ested in calculating a parameter known as the con-
finement ratio (also known as the chemotactic index, 
meandering index or straightness index)16,17. This is 
a measure of the straightness or confinement of cell 
tracks, and it is the ratio of the displacement of a cell to 
the total length of the path that the cell has travelled 
(FIG. 1c). Because the path length is always at least the 
distance of the displacement, the confinement ratio 
can vary between 0 (a completely condensed cell 
track, so the cell returns to the exact position where 
it started) and 1 (a perfectly straight cell track). For 
example, the role of CD44, a receptor for extracellular 
matrix proteins and glycosaminoglycans, was investi-
gated in the migration of cytotoxic T lymphocytes in 
tumours using a combination of cell speed and con-
finement ratio to quantify various behaviours among 
these lymphocytes18.

A problem with the confinement ratio is that its 
value tends to zero as the track duration goes to infin-
ity (FIG. 1c uncorrected ratio; see also REFs 6 and 17, 
and Supplementary information S2 (figure) for an 
example from an experimental data set). This can 
be seen by noting that the confinement ratio is 
closely linked to a mean displacement analysis (see 
Supplementary Information S1 (box)). Thus, a com-Thus, a com-
parison of cell tracks of different durations and of dif-
ferent experiments is problematic. One way to solve 
this is to calculate the confinement ratio for a certain 
duration, but this means discarding shorter cell tracks 
as well as parts of cell tracks that exceed the chosen 
duration. Another way to circumvent the problem of 
dependency on the cell track duration is to multiply 
the confinement ratio of a cell by the square root of 
time; this simple ‘correction’ removes the dependency 
on track duration (FIG. 1c, corrected ratio). To use this 

Figure 1 | Commonly calculated migration parameters. a | A track plot in which 
each track has been shifted such that it starts at the origin of the x and y axes. 
b | Plotting the mean displacement of cells against the square root of time gives 
information about the type of migration involved. A linear relationship is indicative of 
random walk (straight black line). Over short timescales, cells typically displace faster 
than random, which is termed persistent motion (dash-dotted black line). When this 
occurs over long timescales it provides evidence for directional migration (red line), 
whereas a slower than linear increase in the mean displacement denotes confined 
migration (blue line). c | The confinement ratio is calculated by dividing the 
displacement of the cell by its total path length. In the ‘corrected’ confinement ratio 
the resulting value is multiplied by the square root of the cell track duration. The right 
panel shows how the confinement ratio and its corrected version depend on the track 
duration. The uncorrected ratio tends to zero for large track durations, whereas the 
corrected ratio reaches a constant number (for random migration).
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approach to directly compare cell tracks of different 
durations, the total track duration should be longer 
than the typical duration of persistent motion, and the 
time interval between sequential images should be 
shorter than the typical duration of persistence (see 
Supplementary information S1 (box)). The disad-
vantage of this ‘corrected’ confinement ratio is that 
the values are not unitless and are not restricted to 
between 0 and 1. 

Migration angles. In time-lapse imaging, a moving cell is 
observed by taking snapshots at constant time intervals, 
hence the motion of each cell is regarded as a sequence 
of vectors. Because these vectors have a direction associ-
ated with them, it is possible to calculate angles between 
the direction of migration and various other directions in 
space (such as the orientation of certain anatomical struc-
tures). The distribution of angles that can be expected for 
random migration differs for angles in two dimensions 
and three dimensions. If we draw all possible unit vec-
tors in two dimensions, they map onto a circle (FIG. 2a). 
Because each point on the circle has an equal probability 
of occurring, the frequency distribution of angles between 
two random vectors becomes a uniform distribution.

When we draw all possible unit vectors in three 
dimensions, they map onto a sphere. If we subsequently 
split that sphere into differently sized circles in three-
dimensional space, each circle then consists of a set of 
unit vectors that have a particular migration angle with 
a reference vector in common (FIG. 2b). The size of each 
circle reflects the relative probability of occurrence of 
the migration angle associated with that circle. The 
possible angles vary from 0 to 180 degrees but, con-
trary to the case for two dimensions, migration angles 
of around 90 degrees are most likely to occur in three 
dimensions, as these form the biggest circles. The fre-
quency of angles between two random vectors follows 
a sine distribution19,20.

In addition to measuring the angle between two vec-
tors, in three dimensions the angle between a vector and a 
plane can also be measured. The distribution expected in 
this case is most easily determined by defining the plane 
by its normal vector (that is, a vector perpendicular to 
the plane). The angle of a random vector to the plane can 
then be calculated from the angle of the random vector 
to the normal vector (FIG. 2c). The resulting distribution 
expected for random vectors becomes a cosine distribution. 
Possible angles in this cosine distribution vary from 0 to 
90 degrees, where angles that are approximately parallel 
to the plane are the most likely to occur and angles that 
are orthogonal to the plane are the least likely.

By knowing the angle distribution expected for a 
cell migration process that is completely random, it 
is possible to compare observed and expected angle 
distributions to see whether there is a difference from 
random migration (for example, to see if it is directed 
migration). The expected means in the case of ran-
dom migration are 90 degrees for the angle between 
two vectors in both two and three dimensions, and 
approximately 32.7 degrees for the angle between a 
vector and a plane in three dimensions.

There are many different settings where this method 
can be used. One frequently calculated angle is the 
observed turning angle of a cell between sequential time 
frames (FIG. 3a), which together with the cell speed gives 
information about how far cells can travel in a limited 
time period. Because cells generally move in a persistent 
direction at timescales of up to a few minutes, the distri-
bution of turning angles is skewed to small values (FIG. 3b). 
The turning angle distribution depends on the time 
period between frames. A long time interval makes it 

Figure 2 | Angle distributions expected for random migration. a | In two dimensions 
(2D) all possible unit vectors together form a circle. The angle between two vectors is 
denoted by α. The frequency distribution of two vectors with random orientation in 2D  
is uniform as each of the angles has an equal probability of occurring. The mean is 90 
degrees. b | In three dimensions (3D) all possible unit vectors map onto a sphere. For each 
of the coloured circles, the vectors that together compose that particular circle share the 
same angle to the black vector (example angle α is shown for the green circle). The 
frequency distribution of angles between two vectors with random orientation in 3D 
follows a sine distribution because the size of each circle reflects the relative probability 
of occurrence of the associated migration angle. The mean is 90 degrees. c | The angle 
between a vector and a plane in three dimensions (β) can be derived from the angle with 
the normal vector to the plane (α). The frequency distribution of angles between a plane 
and a vector with random orientation in 3D is a cosine distribution. The mean of a cosine 
distribution is ~32.7 degrees (90 − (180 ÷ π)).
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Sine distribution 
A distribution for which the 
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proportional to the sine 
function.

Cosine distribution 
A distribution for which the 
relative number of occurrences 
of each of the possible angles 
between 0 and 90 degrees is 
proportional to the cosine 
function.

more likely that cells will be observed in a random rather 
than a persistent migration mode. Thus, the turning angle 
frequency distribution will shift towards the (symmetri-
cal) sine distribution (see Supplementary information S2 
(figure) for an example from an experimental data set). 
This implies that a fair comparison of turning angles is 
possible only for experiments that are carried out at the 
same frame rate. The frame rate is a somewhat arbitrary 
choice because the turning of cells results from imaging a 
continuous cell path at discrete time points, but the time 
between frames should be kept well below the typical 
duration of persistent cell motion.

Another example of angle measurement is the angle 
between the direction of travel and the shortest route of 
a cell towards certain points of interest (FIG. 3c) (such as 
dendritic cells that might attract T cells through the pro-
duction of chemokines). Plotting the mean (and stand-
ard error) of these angles as a function of the distance to  
those points of interest will show whether cells tend  
to be attracted towards those positions within the image 
volume, and how localized such directed migration is 
(FIG. 3d). For example, using such an angle analysis it was 
shown that naive CD8+ T cells are attracted to sites of CD4+ 
T cell–dendritic cell interactions21. A conventional mean 

displacement plot cannot distinguish between migration 
affected by the presence of multiple local attractors and a 
‘true’ random walk22. An additional important factor to 
consider in the study of directed migration in general is 
that it can be caused by mechanisms other than chemo-
kine attraction. For example, anatomical constraints such 
as blood vessels or fibroblastic reticular cells may also 
influence cell migration23–25.

Angle measurements can be extremely powerful in 
detecting subtle phenomena. For example, we studied the 
angle between the directions of travel of T cells as a func-
tion of the distance between each other, both in space (at 
the same time point) and in time (at the same location)15. 
We found evidence for the presence of dynamic micro-
streams of naive T cells in lymph nodes. A factor that 
may obscure the detection of non-random migration 
angles is the pausing behaviour of cells, because pausing 
cells may have random migration angles. This problem 
can be solved by calculating migration angles for fast 
movement steps only. Because angle measurements can 
detect subtle migration effects, they are helpful for the 
detection and correction of artefacts (see below).

In summary, a powerful set of tools is available to 
analyse the motility of immune cells. These vary from 
qualitative track plots to more quantitative measures 
such as cell speed, motility coefficient, confinement 
ratio and turning angles. As discussed above, migra-
tion angles can be calculated that can help to answer  
questions such as whether immune cells are attracted by 
certain chemokines.

Dealing with artefacts and biases
It is well known that both the imaging of fluorescently 
labelled cells in vivo or in explanted tissue and the 
subsequent cell tracking to obtain three-dimensional 
co ordinates of cells over the time course of an experi-
ment can result in errors in the resulting data sets. Below 
we discuss several potential artefacts that are probably 
present in many experimental data sets, and we suggest 
ways to detect their presence and avoid or correct them 
in the data analysis.

Artefacts of cell tracking. Automated cell tracking is  
carried out with the aid of specialized software, and new 
tracking algorithms are continuously being designed26,27. 
It is well known that automated cell tracking rarely  
gives an error-free result, and manual corrections are 
therefore an essential subsequent step.

An obvious problem in cell tracking occurs when 
individual cells come into close contact with each other 
(FIG. 4a). When these cells are labelled with the same fluo-
rescent marker, it can be difficult to identify which cell is 
which in the subsequent time frames, even for a human 
observer. Thus, automated tracking can easily result in 
the ‘switching’ of tracks (whereby two cells cross paths 
and are assigned the wrong path after the close apposi-
tion of their cell membranes). A possible solution is to 
use stringent algorithm settings such that different tracks 
are assigned to the cells before and after they approach 
each other closely. However, such ‘splitting’ of tracks 
obscures the long-term behaviour of a cell.

Figure 3 | Examples of migration angles. a | The turning angles a cell makes are the 
angles between sequential time points of imaging. Shown are examples of angles at two 
successive time points; solid arrows and green circles show the actual migration path, 
and dashed arrows project the previous migration directions, which are used to calculate 
the turning angles (α

1
 and α

2
). b | An example distribution of turning angles in three 

dimensions (3D). For random migration a sine distribution is expected (dotted line). 
However, turning angle distributions are typically skewed towards smaller angles (solid 
line) owing to persistent motion. c | The angle (α

1
 or α

2
) between the travel direction of  

a cell (green dots and solid arrows) and the shortest route (dashed arrows) towards a 
point of interest (red dot). d | A plot of the mean migration angle (and standard errors) 
between the direction of travel of a cell and the shortest route to a local point of interest 
against the distance to that position. If the mean is smaller than 90 degrees cell migration 
is directed towards the point of interest.
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Voxel
A volume element on a regular 
lattice in three-dimensional 
space.

Phototoxicity 
Cell death and other 
artefactual cell behaviour 
associated with illumination 
during fluorescence 
microscopy.

Refractive index
A measure of how much the 
speed of light is reduced inside 
a medium, causing the light to 
change direction at the 
interface of two different 
media.

Another type of error that might be introduced by 
automated cell tracking is that cells could be missed for a 
part of the period of imaging, or that cells could errone-
ously be tracked twice because the software may designate 
two cells to what is in reality a single large or stretched 
cell. This could even happen for several time frames in a 
row (FIG. 4b). Such double tracking is even more likely to 
occur when multiple fluorophores are used to label cells 
in the experiment: because of small overlaps in the emis-
sion spectra of different fluorescent markers, the software 
might track a single cell twice (in two colours).

We propose that the manual correction of both 
switching or splitting and double tracking could be 
optimized by the following approach: for all possible 
cell pairs, plot the angle between the directions in which 
each of the two cells of a pair are travelling versus the 
distance between the two cells (FIG. 5a). When the dis-
tance between cells is below a certain threshold value, 
these cells are in close proximity and this could be used 
to check the tracking in an organized and consistent 
manner for the occurrence of switching or splitting and 
double tracking. For double tracking, especially those 
cell pairs that travel in a similar direction are suspect.

Another potential tracking artefact is related to the fact 
that only a limited volume can be visualized during imag-
ing experiments. Cells near the border of the image vol-
ume are hard to track because they might be in the process 
of leaving or entering that volume. As a consequence, it 
is difficult to determine the actual centre of mass of such 
cells (FIG. 4c). Cell positions estimated by tracking software 
are based on the voxels within the image volume, so this 
results in a centre of mass within that volume. errors in  
calculating the centre of mass are most pronounced  
in the axial dimension (that is, the z axis direction) 
because of excitation of fluorophores outside the focal 
plane28. Such out-of-focus excitation means that even a 

cell that is in reality completely outside the image volume 
could still give rise to excitation and thus be assigned a 
centre of mass inside the volume. This tracking artefact 
leads to cellular migration that seems to be parallel to 
the image borders. It also introduces errors in migration 
para meters, for example speed and displacement become  
underestimated at the image borders.

An approach that can help to detect border tracking 
errors is to study the angle between cell movements and 
the border planes as a function of the distance to the  
given plane. When migration seems to be parallel to  
the border for cells that are close to it (FIG. 5b), this is likely 
to be an artefact. To prevent such artefacts from affect-
ing the analysis, we suggest that any cell movement that 
has a starting coordinate within a limited distance (this 
distance could be based on the above analysis) of one 
of the borders should be discarded. note that the track-
ing itself should first be carried out for the entire image 
volume, and not for the smaller region with the borders 
stripped off.

Imprecise z calibration. Imaging experiments, whether 
they are carried out on explanted organs or in vivo, are 
complex to set up and perform, and the imaging itself 
could lead to artefacts in the observed behaviour29. For 
example, a well-known problem is that phototoxicity can 
give rise to anomalous cell motility. Another issue is that 
different x and y resolutions (typically 0.5−1 μm steps) 
and z resolutions (typically 3−5 μm steps) are generally 
used in experiments. Independent of the different reso-
lutions, the determination of the exact spatial location 
of fluorophore excitation is fundamentally less precise 
in the axial than in the lateral dimensions28.

However, an even bigger and not so well-known prob-
lem is that the calibration of the voxel size in the axial 
dimension is imprecise. This can be shown by studying 
the projections of the velocity vectors of travelling cells 
in each of the three dimensions separately. For migration 
that is completely random in all directions, the cells and 
thus their velocity projections are expected to behave in 
the same way in each dimension. In experimental data 
sets of immune cell migration, this is typically true for the 
two lateral dimensions but not for the axial dimension 
— that is, the average velocity component in the z axis  
direction is generally different from that in the x and 
y axis directions. We compared data sets from various  
laboratories and found that the axial velocity compo-
nents usually differ by 10−20% from the lateral velocity  
components (either slower or faster movement).

The reasons for the difficulty of z calibration are not 
entirely clear, but one factor is the refractive index of the 
investigated tissue and of the immersion fluid used. This 
index is difficult to determine for tissues but the esti-
mated z axis positions (and thus the velocities) strongly 
depend on it. To obtain a more precise z calibration it 
would be helpful to use time-lapse imaging of cells in an 
environment where it is known that cells migrate ran-
domly. For that purpose the migration of naive T cells 
within the lymph node paracortex in the absence of cog-
nate antigen could be used, because it has been found 
that migration is essentially random in that case30.

Figure 4 | Scheme showing the artefacts in time-lapse imaging data that are due 
to tracking errors. a | Switched tracks can occur when the cell membranes of two cells 
become closely apposed. b | A cell can be tracked twice if the tracking algorithm 
designates a large or stretched cell as two cells. c | Near the border of the image volume, 
it is difficult to estimate the centre of mass of cells (red dots are true or estimated centres 
of mass). Time steps are denoted by t.
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Tissue drift
The artefactual movement of 
an entire specimen during an 
imaging experiment. It gives 
the impression that cells within 
the tissue are moving 
collectively in a certain 
direction.

Second harmonic 
generation
An optical process in which 
photons are formed that have 
twice the energy of the initial 
photons (and thus half of the 
original wavelength) when 
interacting with nonlinear 
materials such as collagens.

However, it is probable that the problem of the axial 
resolution cannot be entirely resolved by sufficiently pre-
cise calibration. Therefore, we propose a correction to 
the z axis coordinates for those data sets in which the dif-
ference between axial and lateral velocities is not known 
with certainty to be a real phenomenon. This correc-
tion can be made by multiplying each z axis coordinate 
by an appropriate factor such that the average velocity  
components in each dimension become equal.

Small tissue drift. Another artefact of time-lapse imag-
ing that cannot be entirely avoided is the slow drifting 
of the entire imaged tissue. This obviously occurs in 
intravital imaging studies in which the anaesthetized 
animal is alive and therefore is making small move-
ments. However, tissue drift also occurs in organ explant 
experiments, because the flow of medium causes slow 
drifting of the entire organ despite its firm attachment. 
The presence of such tissue drift means that the whole 
visualized volume, including all of the fluorescent cells 
within it, shifts slightly during the experiment (this 
is often visible in the videos). Frequently, tissue drift 
seems to be constant, but sometimes a clear change in 
the direction or speed of the flow is evident. When this 
drift is not corrected for, the cell movements that are 
analysed by tracking will contain an artefactual compo-
nent that is caused by the movement of the entire field. 
Typically, the size of that artefactual component is of 
the order of tens of μm per hour, which is much slower 
than the average T cell migration speed of ~10 μm per 
minute in lymphoid tissues in the absence of cognate 
antigen2,30,31. Thus, small tissue drift has a limited effect 
on the average speed of immune cells. However, it may 
obstruct the detection of other migration phenomena 
such as directed migration. Furthermore, drift in the 
axial dimension might especially lead to misinterpre-
tations because cells might seem to be dividing when 
they are not, or because the number of visible cells 
might dramatically change as the image volume drifts 
to another depth.

An approximate correction for tissue drift can be car-
ried out if a static cell population (relative to the dynamic 
population under analysis) is visualized. examples 
of such static cellular structures are blood vessels, the 
networks of fibroblastic reticular cells and follicular 
dendritic cells in lymph nodes23,32–35, or collagen fibres 
visualized by second harmonic generation. To use such 
cell populations for correction, it is important to detect 
multiple well-defined objects, for example certain cell 
bodies or parts of cells, that are entirely within the image 
volume over successive time-lapse images. The average 
displacement of the centres of mass of those objects can 
then be calculated for each time point, and that move-
ment (which is thus assumed to be artefactual instead of 
real) can be subtracted from the movement of all tracked 
motile cells. Alternative options for tissue drift correc-
tion include the use of the displacement of the centres 
of mass of a subpopulation of fluorescently labelled 
cells that seem to be non-motile, the use of the mean 
displacement of the entire visualized cell population or  
the displacement of low-velocity movements only15 (in the 
absence of chemokine gradients there might be no net 
displacement for the entire cell population, but obviously 
this cannot be used if the purpose of the experiment is to 
detect directed migration). When a large number of cells 
is imaged, this might give a reasonable correction.

To assist in the detection of and correction for tissue 
drift, it is helpful to plot the mean of the angles between 
the travel directions of all cell pairs as a function of the 
distance between the two cells of a pair (FIG. 5c). Cells 
that are located far apart should on average not show 
a directional preference if the migration is random. If 
such a preference is found, it can be indicative of motion 
biased in a certain direction, for instance as a result of 
a chemokine gradient, but it can also result from tissue 
drift. We recently used the cell-pair angle analysis to 
detect and correct for tissue drift15.

Studying migration angles relative to the border planes 
is also a helpful tool in the detection of both tissue drift and 
imprecise z calibration. For instance, if the axial velocity 

Figure 5 | using angle measurements to detect artefacts. a | Plotting the angle between the directions of cell pairs as 
a function of the distance between them. Cell pairs may have been tracked twice when their centres of mass are extremely 
close (red dots), especially when the angle between their migration directions is low. Cells that are close together can also 
be used to assist in the detection of splitting or switching of tracks. The red dotted line indicates the typical radius of a cell. 
b | Plotting the mean angles with a border plane versus the distance to that plane can help to find deviations from 
expectation (black dotted line at ~32.7 degrees) due to artefacts such as errors in tracking near borders (red solid line) or 
an imprecise z calibration (blue line). c | Plotting the average angle between the migration directions of cell pairs as a 
function of the distance between them (blue solid line gives expectation). Artefacts can influence the observed 
relationship, for example tissue drift leads to apparent large scale correlated movement (red line).
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is higher than the lateral velocities owing to imprecise z  
calibration, this would result in an overall increased angle 
to the axial border plane (FIG. 5b, blue line). A similar effect 
would occur when there is a tissue drift component along 
the z axis. examples of artefact detection and correction 
in experimental data sets using angle measurements are 
shown in Supplementary information S3 (figure).

Bias of cell-based parameters. There are two slightly 
different ways to quantify cell migration parameters. 
most researchers first carry out a calculation for each 
cell separately; from the results of those calculations, 
the mean or median for the entire population of cells 
is determined (‘cell-based parameters’). Alternatively, 
the mean or median of all separate movement steps can 
be calculated independent of which track it belongs to 
(‘step-based parameters’).

An advantage of the cell-based approach is that it is 
more intuitive to think about the behaviour of single 
cells than that of the entire population. Furthermore, the 
visualized population could consist of subpopulations 
that have different, biologically relevant behaviours. This 
might be discovered by plotting the distribution of the 
parameter of interest among all cells or by studying cor-
relations between multiple cell-based parameters. For 
example, cortical thymocytes were found to consist of a 
subpopulation of slow, randomly migrating cells and  
a subpopulation of fast-moving cells with a preferential 
movement perpendicular to the thymic capsule, and 
it was suggested that the fast-moving subpopulation 
might be positively selected thymocytes36. In a step-
based approach, subpopulations might be overlooked. 
Sometimes, a cell-based approach is the only way to 
investigate the problem at hand, for example when the 
ancestors of dividing cells are traced. 

However, cell-based parameters can be biased for 
multiple reasons. The most important reason is related 
to the fact that scanning of multiple z stacks takes time, 
and the investigator needs to find a compromise between 
the image volume size and the delay between sequential 
time frames. Typically, image volumes are wide in the  
lateral directions (hundreds of μm) but narrow in  
the axial direction (usually around 40 μm). Because  
of the limited image volume, cells are continuously 
entering and leaving that space, especially in the axial 
dimension. Therefore, the time period during which 
cells are in view differs greatly between cells, and this 
could influence the value of the calculated parameter of 
that cell. For example, fast moving cells have a tendency 
to stay in the image volume for short periods of time 
(before leaving mainly in the axial dimension). Such cells 
are also likely to have relatively straight tracks (as they 
have a high confinement ratio and low turning angles) 
and thus might seem to be a separate subpopulation. 
However, if these cells could be followed for longer 
periods of time they might in fact not be moving so fast 
and straight. So, the shape of the visualized space affects 
the type of motion that is preferentially detected by cell-
based parameters. This also means that a change in the 
volume or shape of the imaged space influences the cal-
culated parameters, which might be one of the factors 

explaining the variability between results from different 
laboratories. Frequently, researchers require tracks to be 
in view for several minutes to be included in their analy-
sis, which introduces another bias towards more slowly 
moving cells. Another reason for the presence of biases 
in cell-based parameters is the discussed artefacts. For 
example, splitting of tracks causes a single cell to contrib-
ute multiple times to a cell-based parameter (note that 
the re-entry of cells to the image volume has a similar 
effect), and tracking errors near borders of the image 
volume would affect cell-based motility parameters.

These problems are largely resolved by using step-
based rather than cell-based parameters. movement 
steps that start near borders can be excluded from the 
calculations. The splitting of tracks and the re-entry 
of cells as new tracks are not major problems because 
for a step-based parameter it does not matter to which 
cell a movement step belongs. even switching of tracks 
introduces only a limited error because only the few 
time steps involved in a switch are affected, rather 
than the entire track as would be the case for a cell-
based parameter (note that in cases in which there is 
doubt, splitting of tracks is preferable to switching of 
tracks to avoid this limited error). Finally, the shape 
of the imaged space has little effect on step-based 
parameters because each individual movement step 
occurs within a very small part of the space. Only the 
steps that are near one of the borders could be biased, 
because detection is limited to movements that remain 
in view. Because steps that start near borders need to 
be removed anyway (to avoid tracking errors), this 
problem is automatically avoided.

Cell migration parameters, such as speeds and angle 
measurements, can easily be calculated in a step-based 
manner. However, for the mean displacement plot and 
the confinement ratio the biases associated with a cell-
based approach cannot be easily avoided. Cells that are 
in view for a long time period tend to be cells that move 
slowly and have limited displacement (because faster 
moving cells with greater displacement are more likely to 
leave the image volume), which could lead to an under-
estimate of the mean displacement for large time steps 
and therefore to an apparent confinement of cells. Hence, 
using just the mean displacement plot, it may be difficult 
to distinguish between the possible types of migration 
behaviour (random, directed or confined migration). 
Similarly, the confinement ratio is a cell-based and thus 
biased approach. For example, among cells with long 
tracks, confined cells are over-represented because these 
tend to be the cells that stay within the image volume for 
long periods. To solve these issues, a reasonable step-
based alternative to the confinement ratio is to calculate 
turning-angle distributions (see above). The mean dis-
placement plot to detect migration processes that differ 
from a random walk can be complemented by studying 
other local angles of movement.

In conclusion, various artefacts related to time-lapse 
imaging (imprecise z calibration and small tissue drift) 
and to cell tracking (switching or splitting of tracks, dou-
ble tracking and border tracking) are inevitably present 
in experimental data sets. However, a toolbox consisting 
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Optimization algorithm
A numerical method for finding 
the values of a set of 
parameters such that the value 
of a function of those 
parameters is as small or large 
as possible. In a data-fitting 
procedure those parameter 
values represent the best fit.

mostly of various angle measurements can help to detect 
and correct for such artefacts (TABLE 1). Furthermore, by 
using step-based rather than cell-based analysis methods 
most biases can be avoided.

Contact time analysis
In addition to analysing immune cell migration, a fre-
quently investigated parameter is the duration of inter-
actions between immune cells (recently reviewed in 
REF. 37). Ideally, contact durations in different experi-
mental conditions are compared and correlated to func-
tional readouts of an immune response. For example, it 
was shown that the antigen dose sensed by T cells deter-
mines the duration of the phase of brief T cell–dendritic 
cell interactions, and that this correlates with T cell 
proliferation and effector function38. unfortunately, 
contact duration, or the distribution of contact times, 
is a difficult parameter to determine because imaging is  
limited in both time and space. This means that for 
many contacts the initiation and/or the termination is 
not observed, and that the observed contact duration 
often underestimates the true duration.

Researchers usually calculate the mean or median 
of all the observed durations in an experiment, thus 
obtaining an underestimate of the true contact duration. 
Sometimes a distinction is made between contacts for 
which the exact duration is known and those for which 
it is not6,39. One strategy to try to find the true contact 
durations is to leave out those interactions for which 
the exact duration is not known5, but this introduces a 

strong bias for brief interactions20. We recently developed 
a method to estimate the true contact time distribu-
tion by deriving the theoretically expected relationship 
between true and underestimated contact time40. An 
optimization algorithm can then be used to estimate the 
true contact time distribution from the underestimated 
contact times. Alternatively, an estimate for the mean 
true contact time can be obtained by using a straight-
forward ‘shortcut’ approach that is based on the aver-
age number of conjugates present and on the number 
of initiating, as well as terminating, contacts during the 
imaging period40. We are not aware of other approaches 
to estimate the true contact time distribution directly 
from contact time data.

most of the discussed artefacts do not affect the 
observed contact durations. However, the artefact of 
tissue drift can have a strong impact on the duration 
of observed interactions, because it leads to conjugates 
moving in and out of view. This occurs mostly in the 
z axis direction because of the thin z stack that is nor-
mally used (for example, tissue drift of tens of μm per 
hour in combination with a 40 μm z stack results in a 
large fraction of conjugates entering and exiting in  
a 1 hour experiment). In future experiments that aim to 
determine contact times, the effect of tissue drift can be 
minimized by increasing the image volume in the z axis 
direction (for examples see REFs 6 and 41) because on 
average conjugates will be further away from the bor-
ders. Imaging a more cube-like volume is therefore an 
important step to obtain reliable contact data results.

Table 1 | Potential biases and artefacts in time-lapse imaging data, and tools for correction

Artefact or bias How to detect How to correct

Switching and 
splitting of tracks

Two cells in close proximity are suspect 
(especially when the turning angles of both 
cells are large).

Manually study suspect cases and correct (in 
cases of doubt prefer splitting over switching).

Double tracking Cell pairs in close proximity with similar travel 
directions are suspect.

Manually study suspect cases and correct where 
necessary.

Errors of tracking 
near borders

Plot the average angle to border planes as a 
function of the distance to those planes (visible 
as lower average angles near the borders).

Discard movement steps close to the border.

Imprecise z 
calibration

Plot the average angle to border planes as 
a function of the distance to those planes 
(visible as an average angle that is distinct 
from 32.7 degrees at any distance) or measure 
the velocity projections in each dimension 
separately.

Multiply each z axis coordinate with a factor such 
that the average velocity projections in each 
dimension become equal.

Small tissue drift If cells that are distant from each other travel 
in similar directions, this may be indicative 
of tissue drift. Tissue drift will also affect the 
average angle of a cell to the border planes.

Subtract the average displacement of static cell 
populations or that of (low-velocity steps) of 
motile cell populations.

Cell-based 
parameters are 
biased

Not applicable. Use step-based calculations whenever the 
scientific question allows. As an alternative for the 
confinement ratio, the straightness of tracks can 
be quantified by measuring turning angles. The 
mean displacement plot can be complemented by 
studying other migration angles.

The initiation or 
termination of 
contacts is not 
observed

Not applicable. Estimate the true contact time distribution 
from the observed contact times40. The mean 
contact time can also be estimated using a 
straightforward rule40.
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Concluding remarks
Here, we have proposed ways in which the analysis 
of time-lapse microscopy data on migration of and 
interactions between cells of the immune system 
can be refined. We have discussed various artefacts 
that are present in many cell migration data sets and 
how these issues can be resolved (TABLE 1). Some of 
these approaches can also assist in the manual cor-
rection of automated tracking results by identifying 
the parts of tracks to be checked for correctness. We 
have emphasized that data analysis can lead to biased 
results and because the shape and size of the imaged 

space influences cell-based calculations we propose 
that step-based methods should be used whenever the 
question of interest allows this. A further improvement 
in that respect would be to make the image volume 
used more equal in size in each dimension than is the 
current experimental practice (see BOX 1 for further 
experimental setup considerations).

Depending on the scientific questions asked and 
the amount of detail needed for the answer, the dis-
cussed artefacts and biases could have a limited or 
a large effect on the quantitative results and their 
interpretation. For example, small tissue drift will 
minimally affect the average speed of immune cells, 
but it may have a strong effect on the measurement 
of directed migration and on estimated contact times 
between cells. The importance of artefact correction 
further depends on the size of the differences between 
experimental settings: when small but biologically rel-
evant differences are present, they may be obscured 
by artefacts and thus be missed in the analysis. By 
contrast, artefacts or biased analysis may produce 
spurious results in the form of small differences that 
are not really there between experimental settings. 
In general it is important to correct for artefacts 
because subtle differences in cell migration behav-
iour may have important functional consequences on 
the level of the entire immune system. For example, 
subtle chemokine-mediated attraction of naive CD8+ 
T cells to specific dendritic cells promotes memory 
CD8+ T cell generation21. The toolbox that we propose 
here will further improve the comparability between 
experiments from different laboratories and is in gen-
eral an important step towards a more quantitative 
analysis of imaging experiments. Although we have 
focused on approaches in the field of immunology, we 
expect that the issues discussed here will have a role 
in any scientific discipline investigating motility and 
interactions at the level of single cells, for example in 
imaging of development42.

 Box 1 | Optimization of experimental setup

To allow robust and powerful data analysis, an experimental design that includes the 
following considerations is important (see REFs 29 and 43 for a more detailed 
discussion of some of these issues):
•	Choose the fluorescent labels such that overlap of the fluorophore emission spectra is 

minimized.

•	The cell number needs to be sufficiently high to generate enough data points in one 
image sequence, but not too high as this makes tracking problematic.

•	The fluorescence intensity of the cells needs to be sufficient to find which voxels 
belong to cells, but it should not lead to saturated images.

•	Minimize phototoxicity, thermal damage and toxicity due to the dye used.

•	Choose an image acquisition speed and image volume size that can capture the 
behaviour of interest. We recommend an axial dimension (along the z axis) higher than 
is typical of current practice (especially for contact time measurements) because this 
helps to avoid biases caused by cell-based analysis. However, it should be noted that 
there is a compromise between image volume size and the spatial and temporal 
resolutions of the images.

•	Aim for imaging of a control population of cells in the same experiment, as this helps to 
obtain a fair comparison of the behaviour of different cell types.

•	Calibrate the spatial dimensions (especially the axial dimension) for the imaged tissue 
as well as possible, preferably by using a control population of cells that is expected to 
migrate randomly.

•	During experiments, try to keep tissue drift as small as possible, especially in the axial 
dimension.
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