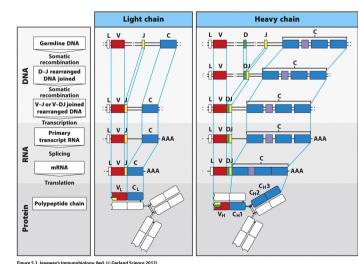


Antibodies and T-cell receptors have a similar structure



The T-cell receptor resembles a membrane-associated Fab fragment of immunoglobulin.

2

4

1

V-D-J recombination movie:

V-D-J recombination

Figure 5.1 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

6

8

T cell receptor: V/D/J segments

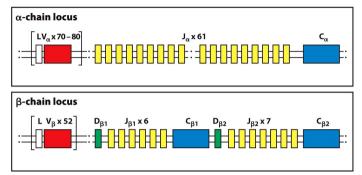
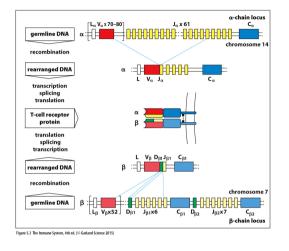



Figure 5.8 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

T-cell receptor diversity is generated by gene rearrangement

The *RAG* genes were key elements in the origin of adaptive immunity

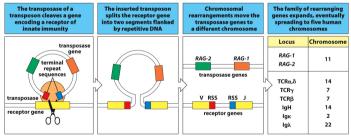
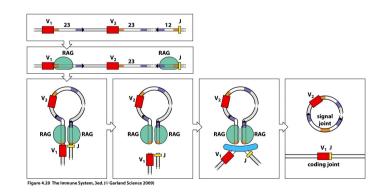
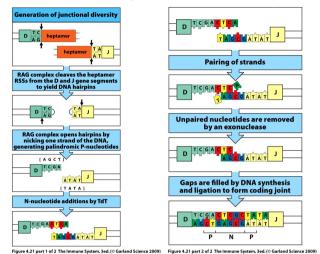



Figure 5.5 The Immune System, 4th ed. (© Garland Science 2015)


RAG genes lack introns and resemble the transposase gene of transposons. Important for function: Recombination process results in an excision circle rather than a linear (and potentially harmful) element.

7

How do RAGs work? RSS are essential!

Generation of junctional diversity

Evolution of RAG reflects the evolution of adaptive immunity

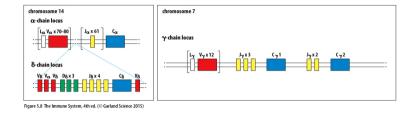
A defect in V(D)J recombination results in severe immunodefiency

SCID = Severe combined immunodeficiency syndrome

absence of adaptive immunity

• May be caused by mutations in at least 13 different genes, e.g. the RAG genes.

- fatal in the first 2 years of life because of opportunistic infections
- Therapy only possible if diagnosis is made at birth or shortly thereafter.


Therapy in the form of bone marrow stem-cell transplantation

What do you think happens to an individual who lacks RAG?

9

Where are the V, D, and J segments (for T cells) coded in our genomes?

The magnitude of potential B and T cell receptor diversity

Element	Immunoglobulin		α:β T-cell receptors	
riement	H	κ+λ	β	α
Variable segments (V)	40	70	52	~70
Diversity segments (D)	23	0	2	0
D segments read in three frames	rarely	_	often	-
Joining segments (J)	6	5(κ)4(λ)	13	61
Joints with N- and P-nucleotides	2	50% of joints	2	1
Number of V gene pairs	1.9 x 10 ⁶		5.8 x 10 ⁶	
Junctional diversity	~3 x 10 ⁷		~2 x 10 ¹¹	
Total diversity	~5 x 10 ¹³		~10 ¹⁸	

14

The magnitude of potential B and T cell receptor diversity

Element	Immunoglobulin		lpha: eta T-cell receptors			
Liement	Н	κ+λ	β	α		
Variable segments (V)	40	70	52	~70		
Diversity segments (D)	23	0	2	0		
Desegments Somatic recombination results in Joining segn combinatorial & junctional diversity						
Joints with N- and P-nucleotides	2	50% of joints	2	1		
Number of V gene pairs	1.9 x 10 ⁶		5.8 x 10 ⁶			
Junctional diversity	~3 x 10 ⁷		~2 x 10 ¹¹			
Total diversity	~5 x 10 ¹³		~10 ¹⁸			

15

Figure 5.9 The Immune System, 4th ed. (© Garland Science 2015)

Recombination process generates diversity

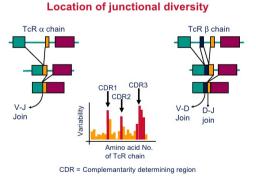
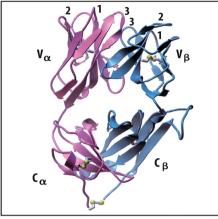
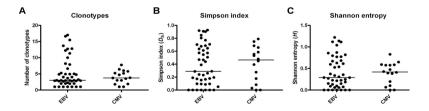
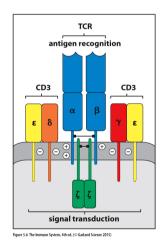



Figure courtesy of Dr. Hewit 16

CDR regions on TCR

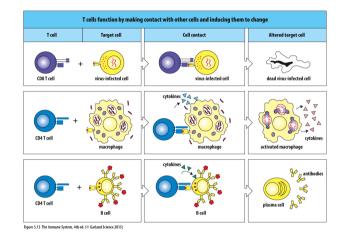


17

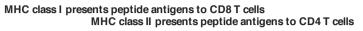

19

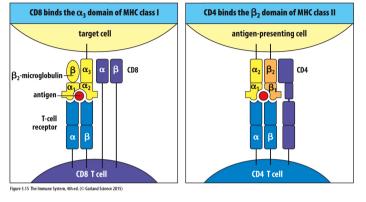
CDR3β analysis of specific T-cells against different viruses

T cell responses against different viruses

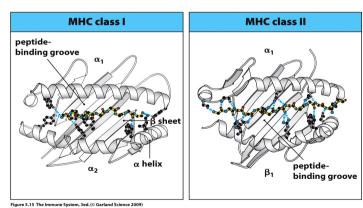


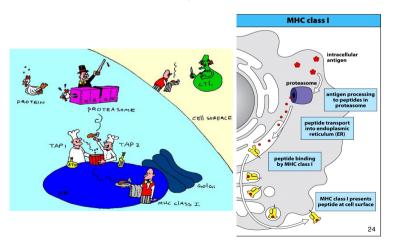
The composition of the T cell receptor complex

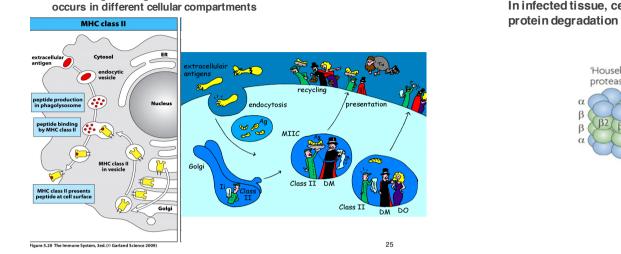

Expression of the T cell receptor on the cell surface requires association with additional proteins

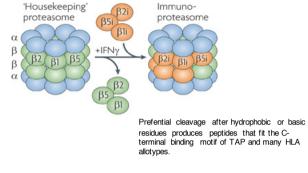

Figure 5.2 The Immune System, 4th ed. (© Garland Science 2015)

T cells function by interacting with other cells


21


MHC = major histocompatibility complex Structure of MHC class I and class II are similar!


22


MHC molecules bind a variety of peptides

Processing of antigens which bind to MHC class I or II occurs in different cellular compartments

In infected tissue, cells switch to immunoproteasome for protein degradation

Klein etal. (2009), Nat Rev Immunol 9(12):833-44 26

MHC class I binds peptides as part of a peptide-loading complex

Processing of antigens which bind to MHC class I or II

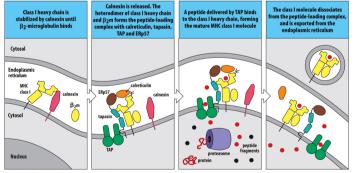
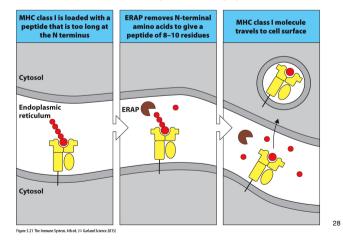
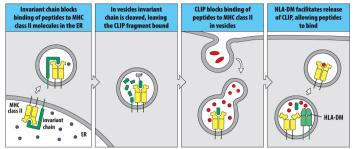
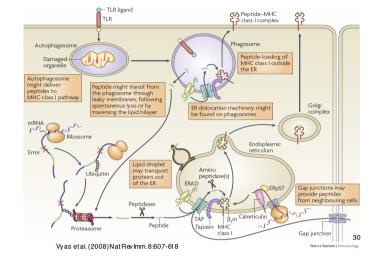



Figure 5.20 The Immune System, 4th ed. (© Garland Science 2015)

In the ER, peptides may be further trimmed from the N-terminal end by an amino peptidase

The MHC class II antigen processing pathway




Figure 5.23 The Immune System, 4th ed. (© Garland Science 2015)

MHC class II molecules are prevented from binding peptides in the endoplasmic reticulum by the invariant chain

CLIP = class II-associated invariant-chain peptide

29

31

Cross-presentation by dendritic cells

MHC Tissue/cell dass I dass II Hematopoietic T cells +++ +* +++ B cells +++ professional antigen-+++ ++ Macrophages presenting cells Dendritic cells +++ +++ +++ Neutrophils --Erythrocytes -Non-hematonoietic + Liver hepatocytes _ **Kidney epithelium** + _ _† + Brain Figure 5.25 The Immune System, 4th ed. (© Garland Science 2015)

Differential expression of MHC class I and II molecules

The major histocompatibility complex

- Cluster of closely linked genes on chromosome 6
- Numerous genetic variants of MHC class I and II present in the human population

=> diversity due to multigene families and genetic polymorphism

The human MHC: human leukocyte antigen (HLA) complex

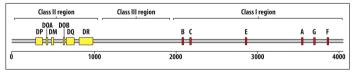
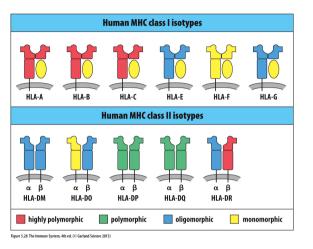
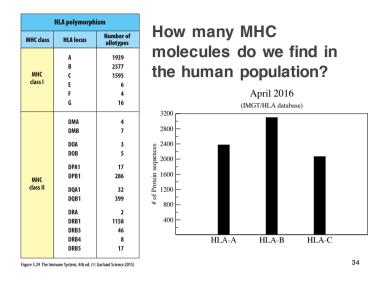
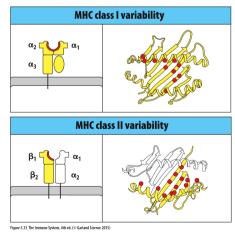




Figure 5.30 The Immune System, 4th ed. (© Garland Science 2015)



33

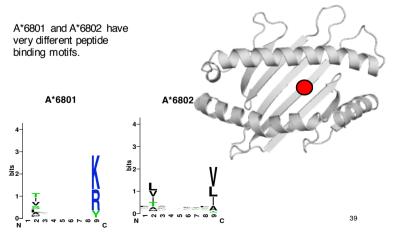
MHC polymorphism affects the binding and presentation of peptide antigens to T cells

The most polymorphic amino acid residues map to the peptide binding site.

36

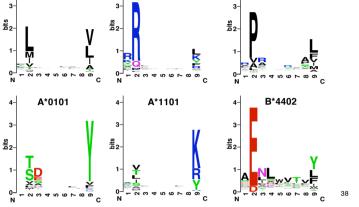
What are the functional differences between different MHC molecules?

MHC molecule Amino acid sequence of peptide-binding motifs and bound peptides Source of bound peptide Position in peptide sequence N-123456789-C Peptide-binding motif HLA-A*0201 ILKEPVHGV Bound peptide HIV reverse transcriptase Class I Peptide-binding motif R HLA-B*2705 Bound peptide SRYWAIRTR Influenza A nucle Self peptide G V Y F Y L Q W G R S T L V S V S Igk light chain HLA-DRB1*0401 Class II HLA-DQA1*0501 HLA-DQB1*0301 Self peptide Transferrin recepto igure 5.30 The B*2705 A*0201 4anchor residues bits bits


Ķ

37

м


Peptide binding motifs of some HLA class I and II allotypes

Seemingly small differences may have a big impact on the peptide binding motif!

A great variety of binding motifs...

4

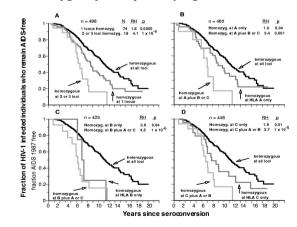
MHC restriction T cell T cell T cel TCR TCR TCR O U HLA-A*0201 HLA-B*5201 HLA-A*0201 antigen-presenting cell antigen-presenting cell antigen-presenting cell Recognition No recognition No recognition Figure 5.35 The Immune System, 4th ed. (© Garland Science 2015)

But: Some T cells are alloreactive => problem for organ and bone marrow transplantations!

T cell recognition of antigens is MHC restricted

4/26/16

Nobel Prize Medicine 1996



MHC molecules are expressed in a codominant fashion.

Which consequences does that have for an individual?

42

HLA heterozygosity delays the progression to AIDS

MHC molecules are expressed in a codominant fashion.

Which consequences does that have for an individual?

Heterozygous individuals are able to present a more diverse set of peptides to their T cells

43

Carrington et al. Science 1999;283:1748-1752 44

Exposure to pathogens shapes MHC gene frequencies

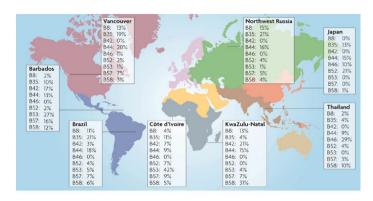

Population emerges from a period of war, scarce resources, poor nutrition and increasingly poor health	Population is reduced in size by 30%	Population expands in size	Population is reduced in size by 75%	
			$\begin{array}{c c} & \otimes & \otimes & \otimes & \otimes \\ & \otimes & \otimes & \otimes & \otimes & \otimes \\ & \bullet & \otimes & \otimes & \otimes & \otimes \\ & \bullet & \bullet & \otimes & \otimes & \otimes \\ & \otimes & \bullet & \bullet & \otimes & \otimes \\ & \otimes & \bullet & \bullet & \bullet & \bullet \end{array}$	
● 50% ○ 25% ● 15% ● 10%	39% 29% 18% 14 %	38% 30% 20% 12%	20% 20% 10% 50%	
Successive epidemics of infectious disease, e.g., smallpox, diphtheria, cholera, and influenza. Only heterozygotes survive. Strong balancing selection is imposed.	A period of peace, plenty, social harmony and effective medicine ensues. Weak selection.	Epidemic of a newly emergent infectious disease, e.g., HIV/AIDS. Only individuals with blue MHC survive. Strong directional selection is imposed.	Despite strong selection, all four MHC haplotypes are present in the surviving population.	

Figure 5.37 The Immune System, 4th ed. (© Garland Science 2015)

=> Balancing selection maintains diversity of HLA allotypes in populations

45

Worldwide HLA class I diversity

Nature Reviews Immunology

Goulder & Watkins (2008) Nat Rev Imm. 8:619-630 46