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Introduction

Robustness = persistence of a trait/phenotype in
a system under perturbations

Evolvability = capacity of a system for
phenotypic adaptation to an environment

Robustness promotes evolvability



Main messages

Evolution of drift robustness in small
populations

Robustness and evolvability are linked and
not two separate things

Empirical adaptive landscapes are exciting
-but many caveats!

Phenotypic evolvability and phenotypic
robustness intrinsically linked in every GPM
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Aims of the paper

Showcase high-throughput determination of
empirical adaptive landscapes from in vitro data

Determine how easy or hard it is for evolution to
navigate these landscapes

Show that these findings hold for gene
expression in vivo for yeast

Conclusion: landscape navigability may have
contributed to the enormous succes of
transcriptional regulation



The good

* High throughput visualisation of complete
empirical adaptive landscapes
- how do real adaptive landscapes look?

 Show that many binding peaks have high
neutrality around them
— (though E vs. 2)

e Show that in vitro measures translate to
actual effects in vivo



The bad

* Showecase a lack of insight into whether
binding affinity can be a related quantitative
phenotype of fithess

* Create measures of landscape navigability
that don’t say that much, or that at least are
very uncertain



How easily can evolution move through empirical
adaptive landscapes of TF binding?
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How easily can evolution move through empirical
adaptive landscapes of TF binding?

Binding affinities for
each TF and all unique
8-mer DNA sequences
(32,896 segs total)



How easily can evolution move through empirical

adaptive landscapes of TF binding?
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How easily can evolution move through empirical
adaptive landscapes of TF binding?

Binding affinity

Empirical landscapes of TF binding
affinity



How easily can evolution move through empirical
adaptive landscapes of TF binding?

Determine navigability by:

1. # of peaks

2. # of accessible mutational paths

3. epistatic interactions <



Three measures. Are they valid?
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Let’s explore two in further detail
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additive model

What is the control
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What is the control: additive model

“AAGTTAATGGATCTG”
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What is the control: additive model

> 0.80 Additive model
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‘l’ What if PWM length > 8?
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What is the control: additive model
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What is the control: additive model
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What is the control: additive model
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What is the control: ad
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What is the control: additive model

0.80 Additive model

Use noise ratio that
covers same range of
scores as in empirical
data
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What is the control: shuffled
model
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What is the control: shuffled
model
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What is the control: shuffled
model
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But...

Frequency

80 Additive model
60
40

80 4 Empirical data

Global optimum != optimurr B

Different binding affinities -
might be wanted! k

0 10 20 30 40 50 60
Number of peaks

Binding affinity != fitness

0000~ 0000
%]
(@]

Frequency

Binding affinity

\’l/l D
-‘.‘--.,', “!‘ ,I "“:Q\\‘

- .'p "
--.. " o‘



So, measure 1:

* |Incorrect assumption that higher binding
affinity is optimal for all TFs.

— Different levels of binding could well be actively
selected for!

* Binding affinity is not a good

fitness, and therefore a very M
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of mutational steps
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Two problems

« Additive model Empirical data
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over the info threshold relative to protein

production/fitness



Global optimum thinking continued
In Vivo
* Aim to prove that landscapes with more peaks are
more difficult for evolution to navigate

* Data shown is in mouse heart tissue.
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So...

* This figure doesn’t say much about
navigability.
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Further

* Affinity correlates:
with gene exp. -
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Conclusions and Comparison

RNA landscapes

-actual fitness
-here a proxy that is much less black-and-white, but

that is treated as if it is.

Require mutational paths that are strictly neutral
or positive, while especially in binding affinity,
many could be over the info threshold

Neutrality around the peak

-might allow for innovation
-but E-score vs. Z-score
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Evolution of drift robustness in small
populations
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Hypothesis: small populations evolve towards lower but robuster fitness peak.

Small pop. -> weakened purifying selection



Methods

- Mathematical model (Markov model, Two-
peak 2D fitness landscape)
- Avida system (complex fitness landscape)



Mathematical model
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Critical population size

Mathematical model: Results

Shift from robust to fragile top at: Neie = 1+ (n — 1)

K =0.01

10‘..

1 1 " M " A
0 0 0.02 0.04 0.06 0.08 0.10

Critical population size

104

10'

2€

log Kk~

e i = 0.001

- - x=0.01

0.02

0.04



Assumptions mathematical model

monomorphic population

evolution as transition from one genotype to
the other

only two fitness peaks

2D



Avida model

- self-replicating avidians

- Distribution of Fitness Effect/Drift test
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Less small-effect deleterious mutations and

lower fitness in small population
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Discussion

- extended mathematical model: rising slope
s/n, slope going down ks/n, slope going up (n-
1)s/n

- avidian offspring replace random avidian in
population

- When avidians at carrying capacity no empty
space



Comparison

small populations -> evolution of drift
robustness?

Similar to: “Survival of the Flattest’’?
compared to small population



Conclusion

Small population tend to evolve toward a more
drift robust state with a lower fitness.

o




GBE

Why Phenotype Robustness Promotes Phenotype
Evolvability

Xinzhu Wei and Jianzhi Zhang*
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Aims of the paper

 Show that Phenotype Evolvability (PE) is an
increasing function of Phenotype Robustness
(PR) = general for any GPM

* Large neutral networks are responsible for
differences between random and bio

* New measure for PE



The good

e Stress importance of large neutrality in TFBS
networks

* Introduce a new measure for phenotype
evolvability



The bad

e Strange control
* Not very new to us



Definitions

* GR =genotype robustness = prob. with
which random mutation does not change
phenotype



Definitions

* PR = phenotype robustness = mean genotype
robustness of all genotypes with a specific
phenotype



Definitions

e
L™

* GE = genotype evolvability = fraction of all
phenotypes reachable by one mutation from
a given genotype



Definitions
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schema

* PE = phenotype evolvability = fraction of all
phenotypes reachable by one mutation from any
genotype exhibiting a given phenotype.

-compare PE’




What they did

E(FR)) = g/G. {1)

whereas the corresponding expected PE is
E(PE)) = 1) e ™8/ /(K —1). (2)
=
Hence,

E(PE) = 1 -3 e ™R /(K - 1). (3)
_ f#i



What they did
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What they did
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What they did
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Better measure than PE

Population genetic simulations
Haploid adult population

All phenotypes but one lethal

Go to equilibrium diversity

Then: different optimal phenotype

See whether reached within certain time
- PFE’



Better measure than PE
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D

iscussion and Comparison

Strange to have constant # of TFBS in total genome,
constant # TFs, but differing # of binding sites per TF

Only SNPs

9

importance of mut. operators

Control in figure 2 is ill-informed by empirical

know

Switc
equili

edge
hes of environment only at pop. genotypic

orium

Nice that PE~PR is general property of GPM
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Robustness and Evolvability of the Human Signaling
Network CrostMark

Junil Kim'>, Drieke Vandamme?®, Jeong-Rae Kim'?, Amaya Garcia Munoz®, Walter Kolch***,

Kwang-Hyun Cho'*

1 Department of Blo and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, Republic of Korea, 2 Systems Biology
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Human Signhaling Network: biochemical intracellular signal

transduction networks
adapted from: Helikar T, 2008

Consists of: tyrosine kinases, G protein-coupled receptors and
integrins
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Their definition of evolvability

Evolvable core: deletion of one node causing the
attractor to change.

Robust neighborhood: deletion of one node
does not change the attractor.
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Paper conclusion

Splitting out evolvability and robustness as
two different things is misguided

Their definition of evolvability actually means
‘critical for normal network function’

Drug targets:

— Approved: big bombs

— Experimental: more precise
— not evo vs. robust!



Take home messages

Empirical adaptive landscapes:
— Possible, but difficult to wrangle

Smaller populations can pick broader fithess
peaks

PE increases with PR.

— PE’ might be better measure

— Mind your control

Bogus network analyses by people who
murder concepts for fun do get published



