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Introduction

 Cooperation: classic evolutionary 
problem

◦ Why would I help someone who is not me?

◦ Paradoxical, yet common

◦ Paradox might come from too literal 
interpretation of “survival of the fittest”

 Lots of answers, lots of controversy
 Our point of view: mesoscale patterns
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Glossary

 Hamilton’s rule for non-selfish behavior:

◦ rb>c

◦ b: benefits, c: costs, r: regression coefficient of 
cooperativeness of interactors

◦ Cooperators need to help cooperators

◦ Mechanisms: kin selection, group selection 
(cf. waves), assortment, etc.

 Prisoners’ Dilemma:

◦ Two individuals interact;  helpers pay c, if the 
other one helps you get b

◦ Not helping always wins (except?)
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Frénoy et al., 2017
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Living public good

 Three genes: [C/D ; LDC/HDC ; LCD/HCD]

 First-order Cooperators: [C,*,*]

 Second-order Cooperators: [D,HDC,*]

 Prisoners’ Dilemma with each neighbor

 Cost C and intensity M [0;∞)

 Global mutation rate for mutation alleles

 No empty space!
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Three regions arise
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Spatial association
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Fixed mutation rates
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Comparisons

 Miniproject: waves

◦ Here no empty space by design!

◦ Could increase the cooperative region

 RNA quasispecies (Collizi & Hogeweg, 2014)

◦ Evolution can modify your mutants

◦ But: Here no neutral evolution and binary genes

 Bumblebees (Hogeweg & Hesper, 1983;1985)

◦ ‘Cheating’ non-heritable; second order 
cooperation stable within group
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Lewin-Epstein et al., 2017
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Microbe-guided altruism

 Asexual organisms with selfish or 
altruistic ‘microbe’

 Prisoners’ Dilemma
 For each interaction possibility of 

transmission

 Mixed condition: 

 Genetically coded altruism dies out
 Spatial variant: K interactions with 

neighbors each timestep
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Results in space
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Models vs stories

 Why is this a model of individuals with 
microbes? Because authors say so!

 Asexual, localized individuals  Microbes!
 ‘Something’ is being transmitted; plasmid, 

phage, signaling, learning, etc. 
 Generality vs specificity
 ‘Altruism’ vs ‘Cooperation’
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Comparisons

 Mutalists:

◦ Timescales: K versus ‘non’

◦ Subset vs complete environment

◦ Horizontal vs vertical transmission

◦ Again no empty space!

 Second-order cooperation:

◦ Altruists make their environment altruistic

◦ Coded altruism: no mutations!

◦ Altruists lose because they cannot alter their 

environment

 Cf Competition: what matters is who loses the frontline
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Joshi et al., 2017
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Mobility + Self-assortment

 Positive assortment of cooperators
◦ Spatially structured populations

◦ High mobility organisms

 Group formation based on adhesion trait
 Pairwise Prisoners dilemma (b > c > 0)
◦ Solitary Cooperators: -c

◦ Solitary Defectors: 0

◦ Strong Altruism

 Co-evolution of two traits
◦ Cooperativeness

◦ Adhesion Trait
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Individual based evolutionary model

 Two forms of mobile systems
 Actively mobile (self propelling particles)

 Passively mobile (dynamic medium)

 Positive assortment
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Evolution of proportion Cooperators

 In both situations, when you are mobile 
more cooperation and more cohesiveness
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Comparison

 CPM (Käfer, Hogeweg & Marée, 2006)

◦ Differential adhesion leads to self-assortment
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 Here: Not very 
strong correlation
◦ Still sufficient 

for positive
assortment



Evolutionary Cycle

 Cyclic evolution of adhesion trait
◦ Evolution more strongly affects cooperators 

than defectors, creates arms-race (RQD)
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Amor et al., 2017
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Synthetic Hypercycle

 Recreated the hypercycle in "wet-lab"
◦ Two cross-feeding microbes (smallest possible 

hypercycle) + parasite

◦ Extra interaction: 
Antibiotics

 Agent-based model
◦ Heaviside-step

functions
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Synthetic Hypercycle
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 Experimental verification results
◦ Parasite destroys cycle when mixed (flask)

◦ Resistance to parasite in space (plates)



Synthetic Hypercycle
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 Extra level of Mutualism
◦ Survival of parasite at edge because of 

complex mutualistic interaction

◦ Created a different cooperative cycle



Agent-based Model
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 Simple representation of internal 
dynamics shows the same results
◦ Parasites survive on the side with Antibiotics



Comparisons

 TODO
◦ Simple rules in complex environments
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Comparisons

 Virtual Microbe (Jeroen)

◦ Crossfeeding without costs

◦ Resistant to ‘parasites’, resistant to jerks

 Self-assortment:

◦ Cooperators want to be together

◦ Spatial structure excludes cheaters
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Discussion

 Local evaluation rather than mesoscale 
patterns ss. important here

 Cooperators help cooperators holds true 
(but: second-order cooperation also works)

 Beware of what you’re assuming (e.g. no 
empty space or mutations) and of how your 
model relates to your (proposed) system

 Lots of different avenues for cooperation 
maybe not quite as hard as thought…
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Take home message

Be nice, but choose your friends carefully!
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Questions?
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Lewin-Epstein extra results
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Joshi extra results
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